skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enantioselective Dearomative Cyclization Enabled by Asymmetric Cooperative Gold Catalysis
Abstract A gold(I)‐catalyzed enantioselective dearomatization is achieved via metal‐chiral ligand cooperation. A new and divergent synthesis of chiral bifunctional binaphthyl‐2‐ylphosphines is developed to allow rapid access to these ligands, which in turn facilitate the application of this chemistry to a broad substrate scope including 1‐naphthols, 2‐naphthols, and phenols. Enantiomeric excesses up to 98 % are achieved via selective acceleration of one enantiomer formation enabled by hydrogen bonding between substrate and ligand remote basic group. DFT calculations lend support to the cooperative catalysis and substantiate the reaction stereochemical outcomes.  more » « less
Award ID(s):
1800525 1920299
PAR ID:
10370648
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
37
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cyclopentene rings possessing a chiral quaternary center are important structural motifs found in various natural products. In this work, we disclose expedient and efficient access to this class of synthetically valuable structuresviahighly enantioselective desymmetrization of prochiral propargylic alcohols. The efficient chirality induction in this asymmetric gold catalysis is achievedviatwo‐point bindings between a gold catalyst featuring a bifunctional phosphine ligand and the substrate homopropargylic alcohol moiety—an H‐bonding interaction between the substrate HO group and a ligand phosphine oxide moiety and the gold‐alkyne complexation. The propargylic alcohol substrates can be prepared readilyviapropargylation of enoate and ketone precursors. In addition to monocyclic cyclopentenes, spirocyclic and bicyclic ones are formed with additional neighboring chiral centers of flexible stereochemistry in addition to the quaternary center. This work represents rare gold‐catalyzed highly enantioselective cycloisomerization of 1,5‐enynes. Density functional theory (DFT) calculations support the chirality induction model and suggest that the rate acceleration enabled by the bifunctional ligand can be attributed to a facilitated protodeauration step at the end of the catalysis. 
    more » « less
  2. Abstract Enantioselective, intermolecular alkene arylamination was achieved through gold redox catalysis. Screening of ligands revealed chiral P,N ligands as the optimal choice, giving alkene aminoarylation with good yields (up to 80 %) and excellent stereoselectivity (up to 99 : 1er). As the first example of enantioselective gold redox catalysis, this work confirmed the feasibility of applying a chiral ligand at the gold(I) stage, with the stereodetermining step (SDS) at the gold(III) intermediate, thus opening up a new way to conduct gold redox catalysis with stereochemistry control. 
    more » « less
  3. Abstract (Diene)Rh(I) complexes catalyze the stereoselective three‐component coupling of silyl glyoxylates, arylboronic acids, and aldehydes to give glycolate aldol products. The participation of Rh‐alkoxides in the requisite Brook rearrangement was established through two component Rh‐catalyzed couplings of silyl glyoxylates with ArB(OH)2to give silyl‐protected mandelate derivatives. The intermediacy of a chiral Rh‐enolate was inferred through enantioselective protonation using a chiral Rh‐catalyst. Diastereoselective three‐component couplings with aldehydes as terminating electrophiles to give racemic products were best achieved with a bulky aryl ester on the silyl glyoxylate reagent. Optimal enantioselective couplings were carried out with thetert‐butyl ester variant using an anisole‐derived enantiopure tricyclo[3.2.2.02,4]nonadiene ligand. 
    more » « less
  4. Abstract We report herein a rare example of enantiodivergent aldehyde addition with β‐alkenyl allylic boronates via chiral Brønsted acid catalysis. 2,6‐Di‐9‐anthracenyl‐substituted chiral phosphoric acid‐catalyzed asymmetric allylation using β‐vinyl substituted allylic boronate gave alcohols withRabsolute configuration. The sense of asymmetric induction of the catalyst in these reactions is opposite to those in prior reports. Moreover, in the presence of the same acid catalyst, the reactions with β‐2‐propenyl substituted allylic boronate generated homoallylic alcohol products withSabsolute configuration. Unusual substrate‐catalyst C−H⋅⋅⋅π interactions in the favoured reaction transition state were identified as the origins of observed enantiodivergence through DFT computational studies. 
    more » « less
  5. Abstract The significance of stereoselective C−H bond functionalization thrives on its direct application potential to pharmaceuticals or complex chiral molecule synthesis. Complication arises when there are multiple stereogenic elements such as a center and an axis of chirality to control. Over the years cooperative assistance of multiple chiral ligands has been applied to control only chiral centers. In this work, we harness the essence of cooperative ligand approach to control two different stereogenic elements in the same molecule by atroposelective allylation to synthesize axially chiral biaryls from its racemic precursor. The crucial roles played by chiral phosphoric acid and chiral amino acid ligand in concert helped us to obtain one major stereoisomer out of four distinct possibilities. 
    more » « less