This article presents an approach for the topology optimization of frame structures composed of nonlinear Timoshenko beam finite elements (FEs) under time‐varying excitation. Material nonlinearity is considered with a nonlinear Timoshenko beam FE model that accounts for distributed plasticity and axial–shear–moment interactions through appropriate hysteretic interpolation functions and a yield/capacity function, respectively. Hysteretic variables for curvature, shear, and axial deformations represent the nonlinearities and evolve according to first‐order nonlinear ordinary differential equations (ODEs). Owing to the first‐order representation, the governing dynamic equilibrium equations, and hysteretic evolution equations can thus be concisely presented as a combined system of first‐order nonlinear ODEs that can be solved using a general ODE solver. This avoids divergence due to an ill‐conditioned stiffness matrix that can commonly occur with Newmark–Newton solution schemes that rely upon linearization. The approach is illustrated for a volume minimization design problem, subject to dynamic excitation where an approximation for the maximum displacement at specified nodes is constrained to a given limit, that is, a drift ratio. The maximum displacement is approximated using the p‐norm, thus facilitating the derivation of the analytical sensitivities for gradient‐based optimization. The proposed approach is demonstrated through several numerical examples for the design of structural frames subjected to sinusoidal base excitation.
more » « less- PAR ID:
- 10370649
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- Volume:
- 123
- Issue:
- 19
- ISSN:
- 0029-5981
- Page Range / eLocation ID:
- p. 4562-4585
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ionic polymer metal composites (IPMCs) are a class of soft electroactive polymers. IPMCs comprise a soft ionic polymer core, on which two stiff metal electrodes are plated. These active materials exhibit large bend- ing upon the application of a small driving voltage across their electrodes, in air or in aqueous environments. In a recent work, we presented compelling theoretical and numerical evidence suggesting that ionic polymer membranes exhibit complex multiaxial deformations neglected by reduced-order structural models. Where most beam theories (including Euler-Bernoulli, Timoshenko, and most higher-order shear deformation models) would suggest vanishing through-the-thickness deformation, we discover the onset of localized deformation that rever- berates into axial stretching. Building upon this effort, here we investigate the role of the electrodes and shear on multiaxial deformations of IPMCs. We establish a novel structural theory for IPMCs, based on the Euler- Bernoulli kinematics enriched with the through-the-thickness deformation in the ionic polymer, computed from a Saint-Venant-like problem for uniform bending. While considering boundary conditions that elicit non-uniform bending, we compare the results of this model against classical Euler-Bernoulli beam theory without enrichment and finite element simulations, encapsulating the nonlinear response of the material. We demonstrate that our theory can predict the macroscopic displacement of the IPMC, along with the localized deformation in the ionic polymer at the interface with the electrodes, which are not captured by the classical Euler-Bernoulli beam theory. This work paves the way to the development of more sophisticated structural theories for IPMCs and analogous active materials, affording an accurate description of deformations at a limited computational cost.more » « less
-
Abstract This study examines radial and axial displacement of the arterial wall under the influence of harmonics and wave reflection for the role of axial wall displacement in pulsatile wave propagation. The arterial wall is modeled as an initially-tensioned thin-walled orthotropic tube. In conjunction with three pulsatile parameters in blood flow, a free wave propagation analysis is conducted on the governing equations of the arterial wall and no-slip conditions at the blood-wall interface to obtain the frequency equation and pulsatile parameter expressions under different harmonics. The influence of wave reflection is then added to pulsatile parameter expressions. With the harmonic values of measured pulsatile pressure and blood flow rate at the ascending aorta in the literature, the waveforms of radial wall displacement, axial wall displacement, and wall shear stress are calculated under different orthotropicity and axial initial tension. The developed theory and calculated results indicate that (1) difference in waveform between blood flow rate, wall shear stress, and axial wall displacement is caused by harmonics, rather than wave reflection; (2) Axial wall displacement does not affect blood flow rate, radial wall displacement, and wall shear stress; (3) Besides wall shear stress, radial wall displacement gradient also contributes to axial wall displacement and its contribution is adjusted by axial initial tension; (4) different wave reflections only noticeably affect the maximum and minimum values of wall shear stress; and (5) The amplitude and waveform of axial wall displacement are predominantly dictated by axial elasticity and axial initial tension, respectively.more » « less
-
Abstract This article presents a novel derivation for the governing equations of geometrically curved and twisted three-dimensional Timoshenko beams. The kinematic model of the beam was derived rigorously by adopting a parametric description of the axis of the beam, using the local Frenet–Serret reference system, and introducing the constraint of the beam cross ection planarity into the classical, first-order strain versus displacement relations for Cauchy’s continua. The resulting beam kinematic model includes a multiplicative term consisting of the inverse of the Jacobian of the beam axis curve. This term is not included in classical beam formulations available in the literature; its contribution vanishes exactly for straight beams and is negligible only for curved and twisted beams with slender geometry. Furthermore, to simplify the description of complex beam geometries, the governing equations were derived with reference to a generic position of the beam axis within the beam cross section. Finally, this study pursued the numerical implementation of the curved beam formulation within the conceptual framework of isogeometric analysis, which allows the exact description of the beam geometry. This avoids stress locking issues and the corresponding convergence problems encountered when classical straight beam finite elements are used to discretize the geometry of curved and twisted beams. Finally, this article presents the solution of several numerical examples to demonstrate the accuracy and effectiveness of the proposed theoretical formulation and numerical implementation.more » « less
-
In this paper, we consider electromagnetic (EM) wave propagation in nonlinear optical media in one spatial dimension. We model the EM wave propagation by the time- dependent Maxwell’s equations coupled with a system of nonlinear ordinary differential equations (ODEs) for the response of the medium to the EM waves. The nonlinearity in the ODEs describes the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. The ODEs also include the single resonance linear Lorentz dispersion. For such model, we will design and analyze fully discrete finite difference time domain (FDTD) methods that have arbitrary (even) order in space and second order in time. It is challenging to achieve provable stability for fully discrete methods, and this depends on the choices of temporal discretizations of the nonlinear terms. In Bokil et al. (J Comput Phys 350:420–452, 2017), we proposed novel modifications of second-order leap-frog and trapezoidal temporal schemes in the context of discontinuous Galerkin methods to discretize the nonlinear terms in this Maxwell model. Here, we continue this work by developing similar time discretizations within the framework of FDTD methods. More specifically, we design fully discrete modified leap-frog FDTD methods which are proved to be stable under appropriate CFL conditions. These method can be viewed as an extension of the Yee-FDTD scheme to this nonlinear Maxwell model. We also design fully discrete trapezoidal FDTD methods which are proved to be unconditionally stable. The performance of the fully discrete FDTD methods are demonstrated through numerical experiments involving kink, antikink waves and third harmonic generation in soliton propagation.more » « less
-
Design and Optimization of an Origami-Inspired Jumping Mechanism With Nonlinear Stiffness PropertiesThis research investigates the feasibility of utilizing origami folding techniques to create an optimized jumping mechanism. As a theoretical example, we study the dynamic characteristics of a jumping mechanism consisting of two masses connected by a Tachi-Miura Polyhedron (TMP) origami structure with nonlinear stiffness characteristics. We show how the desired “strain-softening” effects of the TMP structure can lead to design of jumping mechanisms with optimized performance. The kinematics of TMP origami structure is reviewed and a modified model of its reaction-force displacement curve is presented. We derive the equations of motion of the jumping process and use their numerical solutions extensively for design optimization. Through this process we are able to obtain optimum geometrical configurations for two different objectives: The maximum time spent in the air and the maximum clearance off the ground. Results of this study can lead to emergence of a new generation of more efficient jumping mechanisms with optimized performance in the future.more » « less