skip to main content


Title: The topology of general cosmological models*
Abstract

Is the Universe finite or infinite, and what shape does it have? These fundamental questions, of which relatively little is known, are typically studied within the context of the standard model of cosmology where the Universe is assumed to be homogeneous and isotropic. Here we address the above questions in highly general cosmological models, with the only assumption being that the average flow of matter is irrotational. Using techniques from differential geometry, specifically extensions of the Bonnet–Myers theorem, we derive a condition which implies a finite Universe and yields a bound for its diameter. Furthermore, under a weaker condition involving the interplay between curvature and diameter, together with the assumption that the Universe is finite (i.e. has closed spatial slices), we provide a concise list of possible topologies. Namely, the spatial sections then would be either the ring topologiesS1×S2,S1×~S2,S1×RP2,RP3#RP3, or covered by the sphereS3or torusT3. In particular, under this condition the basic construction of connected sums would be ruled out (save for one), along with the plethora of topologies associated with negative curvature. These results are obtained from consequences of the geometrization of three-manifolds, by applying a generalization of the almost splitting theorem together with a curvature formula of Ehlers and Ellis.

 
more » « less
NSF-PAR ID:
10370658
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
39
Issue:
19
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 195004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbationHε(p,q,I,φ,t)=h(I)+i=1n±12pi2+Vi(qi)+εH1(p,q,I,φ,t),where(p,q)Rn×Tn,(I,φ)Rd×Tdwithn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}.

     
    more » « less
  2. Abstract

    Luminous red novae (LRNe) are transients characterized by low luminosities and expansion velocities, and they are associated with mergers or common-envelope ejections in stellar binaries. Intermediate-luminosity red transients (ILRTs) are an observationally similar class with unknown origins, but they are generally believed to be either electron-capture supernovae in super-asymptotic giant branch stars or outbursts in dusty luminous blue variables (LBVs). In this paper, we present a systematic sample of eight LRNe and eight ILRTs detected as part of the Census of the Local Universe (CLU) experiment on the Zwicky Transient Facility (ZTF). The CLU experiment spectroscopically classifies ZTF transients associated with nearby (<150 Mpc) galaxies, achieving 80% completeness formr< 20 mag. Using the ZTF-CLU sample, we derive the first systematic LRNe volumetric rate of7.83.7+6.5×105Mpc−3yr−1in the luminosity range −16 ≤Mr≤ −11 mag. We find that, in this luminosity range, the LRN rate scales asdN/dLL2.5±0.3—significantly steeper than the previously derived scaling ofL−1.4±0.3for lower-luminosity LRNe (MV≥ −10 mag). The steeper power law for LRNe at high luminosities is consistent with the massive merger rates predicted by binary population synthesis models. We find that the rates of the brightest LRNe (Mr≤ −13 mag) are consistent with a significant fraction of them being progenitors of double compact objects that merge within a Hubble time. For ILRTs, we derive a volumetric rate of2.61.4+1.8×106Mpc−3yr−1forMr≤ −13.5 mag, which scales asdN/dLL2.5±0.5. This rate is ∼1%–5% of the local core-collapse supernova rate and is consistent with theoretical ECSN rate estimates.

     
    more » « less
  3. Abstract

    We consider a process of noncollidingq-exchangeable random walks onZmaking steps 0 (‘straight’) and −1 (‘down’). A single random walk is calledq-exchangeable if under an elementary transposition of the neighboring steps(down,straight)(straight,down)the probability of the trajectory is multiplied by a parameterq(0,1). Our process ofmnoncollidingq-exchangeable random walks is obtained from the independentq-exchangeable walks via the Doob’sh-transform for a nonnegative eigenfunctionh(expressed via theq-Vandermonde product) with the eigenvalue less than 1. The system ofmwalks evolves in the presence of an absorbing wall at 0. The repulsion mechanism is theq-analogue of the Coulomb repulsion of random matrix eigenvalues undergoing Dyson Brownian motion. However, in our model, the particles are confined to the positive half-line and do not spread as Brownian motions or simple random walks. We show that the trajectory of the noncollidingq-exchangeable walks started from an arbitrary initial configuration forms a determinantal point process, and express its kernel in a double contour integral form. This kernel is obtained as a limit from the correlation kernel ofq-distributed random lozenge tilings of sawtooth polygons. In the limit asm,q=eγ/mwithγ > 0 fixed, and under a suitable scaling of the initial data, we obtain a limit shape of our noncolliding walks and also show that their local statistics are governed by the incomplete beta kernel. The latter is a distinguished translation invariant ergodic extension of the two-dimensional discrete sine kernel.

     
    more » « less
  4. Abstract

    We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude ofM*=26.380.60+0.79mag, a faint-end slope ofα=1.700.19+0.29, and a steep bright-end slope ofβ=3.841.21+0.63. Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to ben(M1450<26)=1.160.12+0.13cGpc3. In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity ofϵ912(z=6)=7.231.02+1.65×1022ergs1Hz1cMpc3, based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.

     
    more » « less
  5. Abstract

    We study the rate of convergence in periodic homogenization for convex Hamilton–Jacobi equations with multiscales, where the HamiltonianH=H(x,y,p):Rn×Tn×RnRdepends on both of the spatial variable and the oscillatory variable. In particular, we show that for the Cauchy problem, the rate of convergence isO(tϵ)by optimal control formulas, scale separations and curve cutting techniques. We also show the rateO(ϵλ)of homogenization for the static problem based on the same idea. Additionally, we provide examples that illustrate the rate of convergence for the Cauchy problem is optimal for0<t<ϵandtϵ.

     
    more » « less