skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting glass structure by physics-informed machine learning
Abstract Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training.  more » « less
Award ID(s):
1826420 1944510 1928538
PAR ID:
10370667
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a machine learning (ML) non-Markovian closure modelling framework for accurate predictions of statistical responses of turbulent dynamical systems subjected to external forcings. One of the difficulties in this statistical closure problem is the lack of training data, which is a configuration that is not desirable in supervised learning with neural network models. In this study with the 40-dimensional Lorenz-96 model, the shortage of data is due to the stationarity of the statistics beyond the decorrelation time. Thus, the only informative content in the training data is from the short-time transient statistics. We adopt a unified closure framework on various truncation regimes, including and excluding the detailed dynamical equations for the variances. The closure framework employs a Long-Short-Term-Memory architecture to represent the higher-order unresolved statistical feedbacks with a choice of ansatz that accounts for the intrinsic instability yet produces stable long-time predictions. We found that this unified agnostic ML approach performs well under various truncation scenarios. Numerically, it is shown that the ML closure model can accurately predict the long-time statistical responses subjected to various time-dependent external forces that have larger maximum forcing amplitudes and are not in the training dataset. This article is part of the theme issue ‘Data-driven prediction in dynamical systems’. 
    more » « less
  2. null (Ed.)
    Glasses have been an integral part of human life for more than 2000 years. Despite several years of research and analysis, some fundamental and practical questions on glasses still remain unanswered. While most of the earlier approaches were based on (i) expert knowledge and intuition, (ii) Edisonian trial and error, or (iii) physics-driven modeling and analysis, recent studies suggest that data-driven techniques, such as artificial intelligence (AI) and machine learning (ML), can provide fresh perspectives to tackle some of these questions. In this article, we identify 21 grand challenges in glass science, the solutions of which are either enabling AI and ML or enabled by AI and ML to accelerate the field of glass science. The challenges presented here range from fundamental questions related to glass formation and composition–processing–property relationships to industrial problems such as automated flaw detection in glass manufacturing. We believe that the present article will instill enthusiasm among the readers to explore some of the grand challenges outlined here and to discover many more challenges that can advance the field of glass science, engineering, and technology. 
    more » « less
  3. Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes. 
    more » « less
  4. Abstract Topological constraint theory (TCT) has enabled the prediction of various properties of oxide glasses as a function of their composition and structure. However, the robust application of TCT relies on accurate knowledge of the network structure and topology. Here, based on classical molecular dynamics simulations, we derive a fully analytical model describing the topology of the calcium aluminosilicate [(CaO)x(Al2O3)y(SiO2)1−xy, CAS] ternary system. This model yields the state of rigidity (flexible, isostatic, or stressed‐rigid) of CAS systems as a function of composition and temperature. These results reveal the existence of correlations between network topology and glass‐forming ability. This study suggests that glass‐forming ability is encoded in the network topology of the liquid state rather than that of the glassy state. 
    more » « less
  5. Recent work has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of unknown chaotic dynamical systems. Short-term predictions of the state evolution and long-term predictions of the statistical patterns of the dynamics (``climate'') can be produced by employing a feedback loop, whereby the model is trained to predict forward one time step, then the model output is used as input for multiple time steps. In the absence of mitigating techniques, however, this technique can result in artificially rapid error growth. In this article, we systematically examine the technique of adding noise to the ML model input during training to promote stability and improve prediction accuracy. Furthermore, we introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training. Our case study uses reservoir computing, a machine-learning method using recurrent neural networks, to predict the spatiotemporal chaotic Kuramoto-Sivashinsky equation. We find that reservoir computers trained with noise or with LMNT produce climate predictions that appear to be indefinitely stable and have a climate very similar to the true system, while reservoir computers trained without regularization are unstable. Compared with other regularization techniques that yield stability in some cases, we find that both short-term and climate predictions from reservoir computers trained with noise or with LMNT are substantially more accurate. Finally, we show that the deterministic aspect of our LMNT regularization facilitates fast hyperparameter tuning when compared to training with noise. 
    more » « less