skip to main content


Title: A double-peaked Lyman-α emitter with a stronger blue peak multiply imaged by the galaxy cluster RXC J0018.5+1626
ABSTRACT

We report the discovery of a double-peaked Lyman-α (Ly α) emitter (LAE) at z = 3.2177 ± 0.0001 in VLT/MUSE data. The galaxy is strongly lensed by the galaxy cluster RXC J0018.5+1626 recently observed in the RELICS survey, and the double-peaked Ly α emission is clearly detected in the two counter images in the MUSE field of view. We measure a relatively high Ly α rest-frame equivalent width (EW) of EWLy α, 0 = (63 ± 2) Å. Additional spectroscopy with Gemini/GNIRS in the near-infrared (NIR) allows us to measure the H β, [O iii] λ4959 Å, and [O iii] λ5007 Å emission lines, which show moderate rest-frame EWs of the order of a few ∼10–100 Å, an [O iii] λ5007 Å/H β ratio of 4.8 ± 0.7, and a lower limit on the [O iii]/[O ii] ratio of >9.3. The galaxy has very blue UV-continuum slopes of βFUV = −2.23 ± 0.06 and βNUV = −3.0 ± 0.2, and is magnified by factors μ ∼ 7–10 in each of the two images, thus enabling a view into a low-mass ($M_{\star }\simeq 10^{7.5}\, \mathrm{M}_{\odot }$) high-redshift galaxy analogue. Notably, the blue peak of the Ly α profile is significantly stronger than the red peak, which suggests an inflow of matter and possibly very low H i column densities in its circumgalactic gas. To the best of our knowledge, this is the first detection of such a Ly α profile. Combined with the high lensing magnification and image multiplicity, these properties make this galaxy a prime candidate for follow-up observations to search for LyC emission and constrain the LyC photon escape fraction.

 
more » « less
NSF-PAR ID:
10370708
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1373-1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We describe JWST/NIRSpec prism measurements of Ly α emission in z ≳ 5 galaxies. We identify Ly α detections in 10 out of 69 galaxies with robust rest-optical emission-line redshift measurements at 5 ≤ z < 7 in the Cosmic Evolution Early Release Science (CEERS) and DDT-2750 observations of the Extended Groth Strip field. Galaxies at z ≃ 6 with faint continuum (F150W=27–29 mag) are found with extremely large rest-frame Ly α equivalent widths (EWs; ranging up to 286 Å). Likely Ly α detections are also seen in two new z > 7 galaxies (z = 7.49 and 7.17) from the second epoch of CEERS observations, both showing large Ly α EWs that likely indicate significant transmission through the intergalactic medium (IGM). We measure high Ly α escape fractions in the 12 Ly α emitters in our sample (median 0.28), two of which show $f_{\rm esc}^{ {\rm Ly}\alpha }$ near unity (>0.80). We find that $50_{-11}^{+11}$ per cent of z ≃ 6 galaxies with [O iii] + H β EW>1000 Å have $f_{\rm esc}^{ {\rm Ly}\alpha }$ >0.2, consistent with the fractions found in lower redshift samples with matched [O iii] + H β EWs. While uncertainties are still significant, we find that only $10_{-5}^{+9}$ per cent of z > 7 galaxies with similarly strong rest optical emission lines show such large $f_{\rm esc}^{ {\rm Ly}\alpha }$, as may be expected if IGM attenuation of Ly α increases towards higher redshifts. We identify photometric galaxy overdensities near the z ≳ 7 Ly α emitters, potentially providing the ionizing flux necessary to create large ionized sightlines that facilitate Ly α transmission. Finally, we investigate the absence of Ly α emission in a comparable (and spectroscopically confirmed) galaxy overdensity at z = 7.88 in the Abell 2744 field, discussing new prism spectra of the field obtained with the UNCOVER program.

     
    more » « less
  2. Abstract

    We report an active galactic nucleus (AGN) with an extremely high equivalent width (EW), EWLyα+N V,rest≳921Å, in the rest frame, atz∼ 2.24 in the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX), as a representative case of the high-EW AGN population. The continuum level is a nondetection in the HETDEX spectrum; thus the measured EW is a lower limit. The source is detected with significant emission lines (>7σ) at Lyα+ Nvλ1241, Civλ1549, and a moderate emission line (∼4σ) at Heiiλ1640 within the wavelength coverage of HETDEX (3500–5500 Å). Ther-band magnitude is 24.57 from the Hyper Suprime-Cam-HETDEX joint survey with a detection limit ofr= 25.12 at 5σ. The Lyαemission line spans a clearly resolved region of ∼10″ (85 kpc) in diameter. The Lyαline profile is strongly double peaked. The spectral decomposed blue gas and red gas Lyαemission are separated by ∼1.″2 (10.1 kpc) with a line-of-sight velocity offset of ∼1100 km s−1. This source is probably an obscured AGN with powerful winds.

     
    more » « less
  3. Abstract

    The resonantly scattered Lyαline illuminates the extended halos of neutral hydrogen in the circumgalactic medium of galaxies. We present integral field Keck Cosmic Web Imager observations of double-peaked, spatially extended Lyαemission in 12 relatively low-mass (M∼ 109M)z∼ 2 galaxies characterized by extreme nebular emission lines. Using individual spaxels and small bins as well as radially binned profiles of larger regions, we find that for most objects in the sample the Lyαblue-to-red peak ratio increases, the peak separation decreases, and the fraction of flux emerging at line center increases with radius. We use new radiative transfer simulations to model each galaxy with a clumpy, multiphase outflow with radially varying outflow velocity, and self-consistently apply the same velocity model to the low-ionization interstellar absorption lines. These models reproduce the trends of peak ratio, peak separation, and trough depth with radius, and broadly reconcile outflow velocities inferred from Lyαand absorption lines. The galaxies in our sample are well-described by a model in which neutral, outflowing clumps are embedded in a hotter, more highly ionized inter-clump medium (ICM), whose residual neutral content produces absorption at the systemic redshift. The peak ratio, peak separation, and trough flux fraction are primarily governed by the line-of-sight component of the outflow velocity, the Hicolumn density, and the residual neutral density in the ICM respectively. The azimuthal asymmetries in the line profile further suggest nonradial gas motions at large radii and variations in the Hicolumn density in the outer halos.

     
    more » « less
  4. Abstract

    We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (M*∼ 1011M), compact starburst galaxies atz= 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ΣSFR∼ 2000Myr−1kpc−2) and powerful galactic outflows (maximum speedsv98∼ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([Oii]λλ3726,3729, Hβ, [Oiii]λλ4959,5007, Hα, [Nii]λλ6549,6585, and [Sii]λλ6716,6731) and absorption (Mgiiλλ2796,2803, and Feiiλ2586) lines that allow us to investigate the kinematics of the cool gas phase (T∼ 104K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (medianne∼ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [Sii]nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.

     
    more » « less
  5. null (Ed.)
    ABSTRACT This paper presents a detailed analysis of two giant Lyman-alpha (Ly α) arcs detected near galaxies at z = 3.038 and z = 3.754 lensed by the massive cluster MACS 1206−0847 (z = 0.44). The Ly α nebulae revealed in deep MUSE observations exhibit a double-peaked profile with a dominant red peak, indicating expansion/outflowing motions. One of the arcs stretches over 1 arcmin around the cluster Einstein radius, resolving the velocity field of the line-emitting gas on kpc scales around three star-forming galaxies of 0.3–$1.6\, L_*$ at z = 3.038. The second arc spans 15 arcsec in size, roughly centred around two low-mass Ly α emitters of $\approx 0.03\, L_*$ at z = 3.754. All three galaxies in the z = 3.038 group exhibit prominent damped Ly α absorption (DLA) and several metal absorption lines, in addition to nebular emission lines such as $\hbox{He ii}$$\lambda \, 1640$ and C iii]λλ1906, 1908. Extended Ly α emission appears to emerge from star-forming regions with suppressed surface brightness at the centre of each galaxy. Significant spatial variations in the Ly α line profile are observed which, when unaccounted for in the integrated line, leads to biased constraints for the underlying gas kinematics. The observed spatial variations indicate the presence of a steep velocity gradient in a continuous flow of high column density gas from star-forming regions into a low-density halo environment. A detailed inspection of available galaxy spectra shows no evidence of AGN activity in the galaxies, and the observed Ly α signals are primarily explained by resonant scattering. The study presented in this paper shows that spatially resolved imaging spectroscopy provides the most detailed insights yet into the kinematics of galactic superwinds associated with star-forming galaxies. 
    more » « less