skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Structural and magnetic properties of CoFe2O4 thin films grown on isostructural lattice-matched substrates

Epitaxial thin films of cobalt ferrite (CoFe2O4) are grown on two isostructural substrates, (001)-oriented MgGa2O4 and ZnGa2O4, using pulsed laser deposition. The substrates have a lattice mismatch of 1.26% and 0.70% with bulk CoFe2O4 (CFO) crystal. We have systematically investigated the structural and magnetic properties of the epitaxial CFO films on these substrates. X-ray diffraction and transmission electron microscopy result analysis reveal that the films deposited on spinel ZnGa2O4 are essentially free of defects and are under a small compressive strain, while films on MgGa2O4 show partial strain relaxation along with defect formation. Room temperature magnetization data indicate that CFO grown on ZnGa2O4 substrates have a bulk-like saturation magnetization of 420 emu/cc and a uniaxial substrate-induced anisotropy value of −22.9× 106 erg/cm3 with an anisotropy field as low as 60 kOe.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic insulators, such as the rare‐earth iron garnets, are promising materials for energy‐efficient spintronic memory and logic devices, and their anisotropy, magnetization, and other properties can be tuned over a wide range through selection of the rare‐earth ion. Films are typically grown as epitaxial single crystals on garnet substrates, but integration of these materials with conventional electronic devices requires growth on Si. The growth, magnetic, and spin transport properties of polycrystalline films of dysprosium iron garnet (DyIG) with perpendicular magnetic anisotropy (PMA) on Si substrates and as single crystal films on garnet substrates are reported. PMA originates from magnetoelastic anisotropy and is obtained by controlling the strain state of the film through lattice mismatch or thermal expansion mismatch with the substrates. DyIG/Si exhibits large grain sizes and bulk‐like magnetization and compensation temperature. Polarized neutron reflectometry demonstrates a small interfacial nonmagnetic region near the substrate. Spin Hall magnetoresistance measurements conducted on a Pt/DyIG/Si heterostructure demonstrate a large interfacial spin mixing conductance between the Pt and DyIG comparable to other garnet/Pt heterostructures.

    more » « less
  2. Abstract

    High entropy oxides (HEOs), based on the incorporation of multiple‐principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto‐electronic states. Epitaxial (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4‐HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel‐HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual‐phase coexistence appears as a universal phenomenon in (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain‐induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out‐of‐plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze‐like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine‐tuning properties in oxides.

    more » « less
  3. We investigate the spatial distribution of spin orientation in magnetic nanoparticles consisting of hard and soft magnetic layers. The nanoparticles are synthesized in a core–shell spherical morphology where the target stoichiometry of the magnetically hard, high anisotropy layer is CoFe2O4 (CFO), while the synthesis protocol of the lower anisotropy material is known to produce Fe3O4. The nanoparticles have a mean diameter of ∼9.2–9.6 nm and are synthesized as two variants: a conventional hard/soft core–shell structure with a CFO core/FO shell (CFO@FO) and the inverted structure FO core/CFO shell (FO@CFO). High-resolution electron microscopy confirms the coherent spinel structure across the core–shell boundary in both variants, while magnetometry indicates the nanoparticles are superparamagnetic at 300 K and develop a considerable anisotropy at reduced temperatures. Low-temperature M vs H loops suggest a multistep reversal process. Small angle neutron scattering (SANS) with full polarization analysis reveals a considerable alignment of the spins perpendicular to the field even at fields approaching saturation. The perpendicular magnetization is surprisingly correlated from one nanoparticle to the next, though the interaction is of limited range. More significantly, the SANS data reveal a pronounced difference in the reversal process of the magnetization parallel to the field for the two nanoparticle variants. For the CFO@FO nanoparticles, the core and shell magnetizations appear to track each other through the coercive region, while in the FO@CFO variant, the softer Fe3O4 core reverses before the higher anisotropy CoFe2O4 shell, consistent with expectations from mesoscale magnetic modeling. These results highlight the interplay between interfacial exchange coupling and anisotropy as a means to tune the composite properties of the nanoparticles for tailored applications including biomedical/theranostic uses. 
    more » « less
  4. Abstract This work focuses on the nature of magnetic anisotropy in 2.5–16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850–875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field H σ , estimated from X-ray diffraction data, ranged from 2.8–7.7 kOe with the films on (100) MGO having a higher H σ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H 4 and the uniaxial anisotropy field H a . Values of H 4 range from −0.24 to −0.86 kOe. The uniaxial anisotropy field H a was an order of magnitude smaller than H σ and it decreased with increasing film thickness for NFO films on (100) MGO, but H a increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices. 
    more » « less
  5. Epitaxial untwinned SrRuO3 thin films were grown on (110)-oriented DyScO3 substrates by molecular-beam epitaxy. We report an exceptional sample with a residual resistivity ratio (RRR), ρ [300 K]/ρ [4 K] of 205 and a ferromagnetic Curie temperature, TC, of 168.3 K. We compare the properties of this sample to other SrRuO3 films grown on DyScO3(110) with RRRs ranging from 8.8 to 205, and also compare it to the best reported bulk single crystal of SrRuO3. We determine that SrRuO3 thin films grown on DyScO3(110) have an enhanced TC as long as the RRR of the thin film is above a minimum electrical quality threshold. This RRR threshold is about 20 for SrRuO3. Films with lower RRR exhibit TCs that are significantly depressed from the intrinsic strain-enhanced value.

    more » « less