Referring expression comprehension aims to localize objects identified by natural language descriptions. This is a challenging task as it requires understanding of both visual and language domains. One nature is that each object can be described by synonymous sentences with paraphrases, and such varieties in languages have critical impact on learning a comprehension model. While prior work usually treats each sentence and attends it to an object separately, we focus on learning a referring expression comprehension model that considers the property in synonymous sentences. To this end, we develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels, where features extracted from synonymous sentences to describe the same object should be closer to each other after mapping to the visual domain. We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets, and demonstrate that our method performs favorably against the state-of-the-art approaches. Furthermore, since the varieties in expressions become larger across datasets when they describe objects in different ways, we present the cross-dataset and transfer learning settings to validate the ability of our learned transferable features.
- Publication Date:
- NSF-PAR ID:
- 10370800
- Journal Name:
- International Journal of Computer Vision
- Volume:
- 130
- Issue:
- 10
- Page Range or eLocation-ID:
- p. 2501-2516
- ISSN:
- 0920-5691
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
Referring expressions are natural language construc- tions used to identify particular objects within a scene. In this paper, we propose a unified framework for the tasks of referring expression comprehension and generation. Our model is composed of three modules: speaker, listener, and reinforcer. The speaker generates referring expressions, the listener comprehends referring expressions, and the rein- forcer introduces a reward function to guide sampling of more discriminative expressions. The listener-speaker mod- ules are trained jointly in an end-to-end learning frame- work, allowing the modules to be aware of one another during learning while also benefiting from the discrimina- tive reinforcer’s feedback. We demonstrate that this unified framework and training achieves state-of-the-art results for both comprehension and generation on three referring ex- pression datasets.
-
In this paper, we address referring expression comprehension: localizing an image region described by a natural language expression. While most recent work treats expressions as a single unit, we propose to decompose them into three modular components related to subject appearance, location, and relationship to other objects. This allows us to flexibly adapt to expressions containing different types of information in an end-to-end framework. In our model, which we call the Modular Attention Network (MAttNet), two types of attention are utilized: language-based attention that learns the module weights as well as the word/phrase attention that each module should focus on; and visual attention that allows the subject and relationship modules to focus on relevant image components. Module weights combine scores from all three modules dynamically to output an overall score. Experiments show that MAttNet outperforms previous state-of-the-art methods by a large margin on both bounding-box-level and pixel-level comprehension tasks. Demo and code are provided.
-
Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of participants varied based on their ability to linguistically decode visual data. We aimed to determine which subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high classification accuracy of comprehension state. Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG neural response (per video, per participant) was then computed using canonical component analysis with NoiseTools toolbox. Peakmore »
-
We propose a simple, fast, and accurate one-stage approach to visual grounding, inspired by the following insight. The performances of existing propose-and-rank twostage methods are capped by the quality of the region candidates they propose in the first stage — if none of the candidates could cover the ground truth region, there is no hope in the second stage to rank the right region to the top. To avoid this caveat, we propose a one-stage model that enables end-to-end joint optimization. The main idea is as straightforward as fusing a text query’s embedding into the YOLOv3 object detector, augmented by spatial features so as to account for spatial mentions in the query. Despite being simple, this one-stage approach shows great potential in terms of both accuracy and speed for both phrase localization and referring expression comprehension, according to our experiments. Given these results along with careful investigations into some popular region proposals, we advocate for visual grounding a paradigm shift from the conventional two-stage methods to the one-stage framework.
-
Abstract Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets. Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual tasks, such as detection and localization of objects and events in videos. The problem is more apparent in zoological applications due to the scarcity of annotations and length of videos-most videos are at most ten minutes long. Inspired by cognitive theories, we present a self-supervised perceptual prediction framework to tackle the problem of temporal event segmentation by building a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming bymore »