skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Geomorphology of the Congaree River Floodplain: Implications for the Inundation Continuum
Abstract

Floodplain inundation has been viewed as a type of binary process set by the relative elevation between river stage and levee crest. However, recent reports in the literature show that this perception may have limited applicability. In particular, through‐bank channels, conduits that cross the main river levees or banks, facilitate conditions for an “inundation continuum,” or inundation for a range of sub‐bankfull flows. Moreover, through‐bank channels and their networks provide a direct hydraulic connection between the main river and the floodplain interior. We analyzed through‐bank channel structure and floodplain topography and compared them to river surface elevation to provide greater insight on floodplain inundation processes. Results show that well‐developed levees with through‐bank channels facilitate frequent through‐bank inundation. Where levees are poorly developed, floodplain inundation occurs by overbank flow. Therefore, for a given discharge through‐bank and overbank inundation may occur simultaneously. For the Congaree River floodplain, we infer that this dichotomy of inundation processes leads to temporally and spatially complex inundation flow paths for a given river stage. Further, our analyses reveal that the inundation continuum concept should be considered in the context of having vertical, longitudinal, lateral, and temporal components.

 
more » « less
Award ID(s):
1751926
PAR ID:
10370900
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
12
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐resolution topography reveals that floodplains along meandering rivers in Indiana commonly contain intermittently flowing channel networks. We investigated how the presence of floodplain channels affects lateral surface‐water connectivity between a river and floodplain (specifically exchange flux and timescales of transport) as a function of flow stage in a low‐gradient river‐floodplain system. We constructed a two‐dimensional, surface‐water hydrodynamic model using Hydrologic Engineering Center's River Analysis System (HEC‐RAS) 2D along 32 km of floodplain (56 km along the river) of the East Fork White River near Seymour, Indiana, USA, using lidar elevation data and surveyed river bathymetry. The model was calibrated using land‐cover specific roughness to elevation‐discharge data from a U.S. Geological Survey gage and validated against high‐water marks, an aerial photo showing the spatial extent of floodplain inundation, and measured flow velocities. Using the model results, we analyzed the flow in the river, spatial patterns of inundation, flow pathways, river‐floodplain exchange, and water residence time on the floodplain. Our results highlight that bankfull flow is an oversimplified concept for explaining river‐floodplain connectivity because some stream banks are overtopped and major low‐lying floodplain channels are inundated roughly 19 days per year. As flow increased, inundation of floodplain channels at higher elevations dissected the floodplain, until the floodplain channels became fully inundated. Additionally, we found that river‐floodplain exchange was driven by bank height or channel orientation depending on flow conditions. We propose a conceptual model of river‐floodplain connectivity dynamics and developed metrics to analyze quantitatively complex river‐floodplain systems.

     
    more » « less
  2. Abstract

    The ecology of forested floodplains is intricately linked to river hydrology through the frequency, magnitude, timing and duration of floodplain inundation. Spatial variability in inundation characteristics is influenced by the geomorphic template of a floodplain, both in terms of the topography of floodplain features and connectivity of these features to the main river channel. Spatial variability in inundation, in turn, has the potential to produce spatial variability in forest ecological characteristics. This study examines the influence of floodplain geomorphic features on spatial variability in inundation frequency as well as the relationship between these geomorphic features and the ecological characteristics of a floodplain forest. The frequencies of floods of different magnitudes are determined from flow‐duration analysis of over 100 years of discharge data for a lowland meandering river in Illinois, USA. Data on discharge, stage, and topography are then used to calibrate a two‐dimensional hydraulic model of flow across the floodplain at different levels of inundation. Integrating the frequency and inundation data yields mapping of average annual inundation frequency for different parts of the floodplain. Significant differences in inundation frequency correspond to three distinct floodplain geomorphic features: secondary channels (frequency = 12%), closed depressions (frequency = 4%) and the floodplain surface (frequency = 3%). Tree density is similar among the three types of geomorphic features, but tree species composition and canopy density differ significantly between secondary channels and the floodplain surface. The results provide insight into linkages among hydrology, geomorphology and tree characteristics of forested floodplains of lowland meandering rivers.

     
    more » « less
  3. The morphology of river levees and floodplains is an important control on river-floodplain connectivity within a river system under sub-bankfull conditions, and this morphology changes as a river approaches the coast due to backwater influence. Floodplain width can also vary along a river, and floodplain constrictions in the form of bluffs adjacent to the river can influence inundation extent. However, the relative controls of backwater-influenced floodplain topography and bluff topography on river-floodplain connectivity have not been studied. We measure discharge along the lower Trinity River (Texas, USA) during high flow to determine which floodplain features are associated with major river-floodplain flow exchanges. We develop a numerical model representing the transition to backwater-dominated river hydraulics, and quantify downstream changes in levee channelization, inundation, and fluxes along the river-floodplain boundary. We model passive particle transport through the floodplain, and compute residence times as a function of location where particles enter the floodplain. We find that bluff topography controls flow from the floodplain back to the river, whereas levee topography facilitates flow to the floodplain through floodplain channels. Return flow to the river is limited to locations just upstream of bluffs, even under receding flood conditions, whereas outflow locations are numerous and occur all along the river. Residence times for particles entering the floodplain far upstream of bluffs are as much as two orders of magnitude longer than those for particles entering short distances upstream of bluffs. This study can benefit floodplain ecosystem management and restoration plans by informing on the key locations of lateral exchange and variable residence time distributions in river-floodplain systems.

     
    more » « less
  4. Abstract

    We present a simple modeling framework for the codetermination of bankfull discharge and corresponding bankfull channel geometry (width, depth, and longitudinal channel slope) of an alluvial meandering river. We specifically consider a sand‐bed river whose floodplain is capped by a mud‐rich layer. We inquire as to how the wide spectrum of flows to which the river is subjected leads to the establishment of specific values for bankfull discharge and associated bankfull geometry. Here we provide a physically based predictor of bankfull discharge that goes beyond the simple assumption of the 1.5‐year flood discharge. We do this using physics‐based submodels for channel and floodplain processes. We show that bankfull discharge and bankfull geometry are established as a result of (i) floodplain vertical accretion due to overbank deposition, (ii) migration of the inner bank and outer cut bank, (iii) net removal of floodplain sediment and reduction in average floodplain height due to lateral channel shift, and (iv) in‐channel downstream bed material transport. The flow duration curve is employed to quantify the effect of these processes, as well as to account for flow variability. Our model captures the spatiotemporal evolution of bankfull discharge, depth, width, and down‐channel slope toward equilibrium for specified flow duration curve and watershed characteristics. Our new framework can be used for assessing long‐term river response to change in sediment supply or flow duration curve. A model implementation is presented for the case of the Trinity River, TX, USA, to demonstrate the use of the model and its behavior.

     
    more » « less
  5. Abstract

    Mutual adjustment between process and form shapes the morphology of alluvial river channels, including channel banks. The tops of banks define the transition between the channel and adjacent floodplain, which corresponds to the level of incipient flooding. Despite the geomorphological and hydrological importance of this transition, few, if any, studies have extensively examined spatial variability in bank elevations and its influence on bankfull stage. This study uses an objective method to explore this variability at two spatial resolutions along three alluvial lowland meandering rivers. Results show that variability in bankfull stage is inherent to all three rivers. The mean variability of bankfull stage about the average downstream gradient in this stage is 10% to 20% of mean bankfull depth. Elevations of channel banks exhibit similar variability, even after accounting for systematic variations in heights of inner and outer banks associated with river meandering. Two‐dimensional hydraulic simulations show that the elevation range of mean variability in bankfull stage overlaps considerably with the elevation range of high curvature on rating curves, confirming that variability in bankfull stage influences the shape of these curves. The simulations verify that breaks in channel banks allow flow to extend onto the floodplain at stages below the average bankfull stage. The findings provide fundamental insight into the variable nature of bankfull conditions along meandering rivers and the role of this variability in channel‐floodplain connectivity. The results also inform river‐restoration efforts that seek to re‐establish the natural configuration of channel banks.

     
    more » « less