The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re‐route the reactivity of unactivated N,N‐dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide‐to‐amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C−N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late‐stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad‐ranging applications in chemical synthesis.
The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re‐route the reactivity of unactivated N,N‐dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide‐to‐amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C−N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late‐stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad‐ranging applications in chemical synthesis.
more » « less- PAR ID:
- 10370910
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 134
- Issue:
- 24
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.more » « less
-
The development of new transamidation reactions for the synthesis of amides is an important and active area of research due to the central role of amide linkage in various fields of chemistry. Herein, we report a new method for transamidation of N-acyl-glutarimides with amines under mild, metal-free conditions that relies on amide bond twist to weaken amidic resonance. A wide range of amines and functional groups, including electrophilic substituents that would be problematic in metal-catalyzed protocols, are tolerated under the reaction conditions. Mechanistic experiments implicate the amide bond twist, thermodynamic stability of the tetrahedral intermediate and leaving group ability of glutarimide as factors controlling the reactivity of this process. The method further establishes the synthetic utility of N-acyl-glutarimides as bench-stable, twist-perpendicular, amide-based reagents in acyl-transfer reactions by a metal-free pathway. The origin of reactivity of N-acyl-glutarimides in metal-free and metal-catalyzed processes is discussed and compared.more » « less
-
Abstract The amide bond N−C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N−C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C−C, C−N, C−O and C−S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.
-
The Suzuki-Miyaura cross-coupling has been widely recognized as one of the most important methods for the construction of C–C bonds. However, in contrast to traditional aryl halide or pseudohalide electrophiles, coupling reactions with unactivated C–N and C–O electrophiles have proven significantly more challenging. Here we report the first general palladium-catalyzed Suzuki-Miyaura cross-coupling of both common amides and aryl esters through the selective cleavage of the C–N and C–O bonds under exceedingly mild conditions. Notably, for the first time we demonstrate selective C(acyl)– N and C(acyl)–O cleavage/cross-coupling under the same reaction conditions. The reaction uses a commercially available, bench-stable and operationally-convenient (n3-1-t-Bu-indenyl)Pd(IPr)(Cl) precatalyst. Furthermore, we demonstrate that the reactivity of generic amides and aryl esters can be correlated with barriers to isomerization around the C(acyl)–X (X = N, O) bond, thus providing a blueprint for the development of a broad range of novel coupling reactions of ester and amide electrophiles by the selective activation of C–O and C–N bonds.more » « less