skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Catalytic Degradation of Polyethylene Terephthalate Using a Phase‐Transitional Zirconium‐Based Metal–Organic Framework
Abstract

Polyethylene terephthalate (PET) is utilized as one of the most popular consumer plastics worldwide, but difficulties associated with recycling PET have generated a severe environmental crisis with most PET ending its lifecycle in landfills. We report that zirconium‐based metal–organic framework (Zr‐MOF) UiO‐66 deconstructs waste PET into the building blocks terephthalic acid (TA) and mono‐methyl terephthalate (MMT) within 24 hours at 260 °C (total yield of 98 % under 1 atm H2and 81 % under 1 atm Ar). Extensive structural characterization studies reveal that during the degradation process, UiO‐66 undergoes an intriguing transformation into MIL‐140A, which is another Zr‐MOF that shows good catalytic activity toward PET degradation under similar reaction conditions. These results illustrate the diversity of applications for Zr‐MOFs and establish MOFs as a new class of polymer degradation catalysts with the potential to address long‐standing challenges associated with plastic waste.

 
more » « less
NSF-PAR ID:
10370993
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
24
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polyethylene terephthalate (PET) is utilized as one of the most popular consumer plastics worldwide, but difficulties associated with recycling PET have generated a severe environmental crisis with most PET ending its lifecycle in landfills. We report that zirconium‐based metal–organic framework (Zr‐MOF) UiO‐66 deconstructs waste PET into the building blocks terephthalic acid (TA) and mono‐methyl terephthalate (MMT) within 24 hours at 260 °C (total yield of 98 % under 1 atm H2and 81 % under 1 atm Ar). Extensive structural characterization studies reveal that during the degradation process, UiO‐66 undergoes an intriguing transformation into MIL‐140A, which is another Zr‐MOF that shows good catalytic activity toward PET degradation under similar reaction conditions. These results illustrate the diversity of applications for Zr‐MOFs and establish MOFs as a new class of polymer degradation catalysts with the potential to address long‐standing challenges associated with plastic waste.

     
    more » « less
  2. Abstract

    Nitrones are key intermediates in organic synthesis and the pharmaceutical industry. The heterogeneous synthesis of nitrones with multifunctional catalysts is extremely attractive but rarely explored. Herein, we report ultrasmall platinum nanoclusters (PtNCs) encapsulated in amine‐functionalized Zr metal–organic framework (MOF), UiO‐66‐NH2(Pt@UiO‐66‐NH2) as a multifunctional catalyst in the one‐pot tandem synthesis of nitrones. By virtue of the cooperative interplay among the selective hydrogenation activity provided by the ultrasmall PtNCs and Lewis acidity/basicity/nanoconfinement endowed by UiO‐66‐NH2, Pt@UiO‐66‐NH2exhibits remarkable activity and selectivity, in comparison to Pt/carbon, Pt@UiO‐66, and Pd@UiO‐66‐NH2. Pt@UiO‐66‐NH2also outperforms Pt nanoparticles supported on the external surface of the same MOF (Pt/UiO‐66‐NH2). To our knowledge, this work demonstrates the first examples of one‐pot synthesis of nitrones using recyclable multifunctional heterogeneous catalysts.

     
    more » « less
  3. High-voltage lithium metal batteries (LMBs) are a promising high-energy density energy storage system. However, their practical implementations are impeded by short lifespan due to uncontrolled lithium dendrite growth, narrow electrochemical stability window, and safety concerns of liquid electrolytes. Here, a porous composite aerogel is reported as the gel electrolyte (GE) matrix, made of metal–organic framework (MOF)@bacterial cellulose (BC), to enable long-life LMBs under high voltage. The effectiveness of suppressing dendrite growth is achieved by regulating ion deposition and facilitating ion conduction. Specifically, two hierarchical mesoporous Zr-based MOFs with different organic linkers, that is, UiO-66 and NH2-UiO-66, are embedded into BC aerogel skeletons. The results indicate that NH2-UiO-66 with anionphilic linkers is more effective in increasing the Li+ transference number; the intermolecular interactions between BC and NH2-UiO-66 markedly increase the electrochemical stability. The resulting GE shows high ionic conductivity (≈1 mS cm−1), high Li+ transference number (0.82), wide electrochemical stability window (4.9 V), and excellent thermal stability. Incorporating this GE in a symmetrical Li cell successfully prolongs the cycle life to 1200 h. Paired with the Ni-rich LiNiCoAlO2 (Ni: Co: Al = 8.15:1.5:0.35, NCA) cathode, the NH2-UiO-66@BC GE significantly improves the capacity, rate performance, and cycle stability, manifesting its feasibility to operate under high voltage. 
    more » « less
  4. Abstract

    Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal‐organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO‐67‐X (X: H, NH2, CH3) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature‐programmed desorption mass spectrometry (TPD‐MS) and in‐situ temperature‐programmed infrared (TP‐IR) spectroscopy. Ammonia was observed to interact with μ3−OH groups present on the secondary building unit of UiO‐67‐X MOFs via hydrogen bonding. TP‐IR studies revealed that under cryogenic UHV conditions, UiO‐67‐X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C−H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH−π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD‐MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol−1, suggesting physisorption of ammonia to UiO‐67‐X. In addition, missing linker defect sites, consisting of H2O coordinated to Zr4+sites, were detected through the formation ofnNH3⋅H2O clusters, characterized through in‐situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO‐67 MOFs. This highlights an advantage of using NH3for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO‐67‐X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.

     
    more » « less
  5. Abstract

    Hybridization of metal–organic frameworks (MOFs) and polymers into composites yields materials that display the exceptional properties of MOFs with the robustness of polymers. However, the realization of MOF–polymer composites requires efficient dispersion and interactions of MOF particles with polymer matrices, which remains a significant challenge. Herein, we report a simple, scalable, bench‐top approach to covalently tethered nylon–MOF polymer composite materials through an interfacial polymerization technique. The copolymerization of a modified UiO‐66‐NH2MOF with a growing polyamide fiber (PA‐66) during an interfacial polymerization gave hybrid materials with up to around 29 weight percent MOF. The covalent hybrid material demonstrated nearly an order of magnitude higher catalytic activity for the breakdown of a chemical warfare simulant (dimethyl‐4‐nitrophenyl phosphate, DMNP) compared to MOFs that are non‐covalently, physically entrapped in nylon, thus highlighting the importance of MOF–polymer hybridization.

     
    more » « less