skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life on the edge: Hawaiian model for coral evolution
Abstract Degradation and loss of coral reefs due to climate change and other anthropogenic stressors has fueled genomics, proteomics, and genetics research to investigate coral stress response pathways and to identify resilient species, genotypes, and populations to restore these biodiverse ecosystems. Much of the research and conservation effort has understandably focused on the most taxonomically rich regions, such as the Great Barrier Reef in Australia and the Coral Triangle in the western Pacific. These ecosystems are analogous to tropical rainforests that also house enormous biodiversity and complex biotic interactions among different trophic levels. An alternative model ecosystem for studying coral reef biology is the relatively species poor but abundant coral reefs in the Hawaiian Archipelago that exist at the northern edge of the Indo‐Pacific coral distribution. The Hawaiian Islands are the world's most isolated archipelago, geographically isolated from other Pacific reef systems. This region houses about 80 species of scleractinian corals in three dominant genera (Porites,Montipora, andPocillopora). Here we briefly review knowledge about the Hawaiian coral fauna with a focus on our model species, the rice coralMontipora capitata. We suggest that this simpler, relatively isolated reef system provides an ideal platform for advancing coral biology and conservation using multi‐omics and genetic tools.  more » « less
Award ID(s):
1756616 2128072
PAR ID:
10371009
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
67
Issue:
9
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1976-1985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundCoral reefs house about 25% of marine biodiversity and are critical for the livelihood of many communities by providing food, tourism revenue, and protection from wave surge. These magnificent ecosystems are under existential threat from anthropogenic climate change. Whereas extensive ecological and physiological studies have addressed coral response to environmental stress, high-quality reference genome data are lacking for many of these species. The latter issue hinders efforts to understand the genetic basis of stress resistance and to design informed coral conservation strategies. ResultsWe report genome assemblies from 4 key Hawaiian coral species, Montipora capitata, Pocillopora acuta, Pocillopora meandrina, and Porites compressa. These species, or members of these genera, are distributed worldwide and therefore of broad scientific and ecological importance. For M. capitata, an initial assembly was generated from short-read Illumina and long-read PacBio data, which was then scaffolded into 14 putative chromosomes using Omni-C sequencing. For P. acuta, P. meandrina, and P. compressa, high-quality assemblies were generated using short-read Illumina and long-read PacBio data. The P. acuta assembly is from a triploid individual, making it the first reference genome of a nondiploid coral animal. ConclusionsThese assemblies are significant improvements over available data and provide invaluable resources for supporting multiomics studies into coral biology, not just in Hawaiʻi but also in other regions, where related species exist. The P. acuta assembly provides a platform for studying polyploidy in corals and its role in genome evolution and stress adaptation in these organisms. 
    more » « less
  2. Abstract Scleractinian corals are the main modern builders of coral reefs, which are major hot spots of marine biodiversity. Southern Atlantic reef corals are understudied compared to their Caribbean and Indo‐Pacific counterparts and many hypotheses about their population dynamics demand further testing. We employed thousands of single nucleotide polymorphisms (SNPs) recovered via ezRAD to characterize genetic population structuring and species boundaries in the amphi‐Atlantic hard coral genusFavia. Coalescent‐based species delimitation (BFD* – Bayes Factor Delimitation) recoveredF. fragumandF. gravidaas separate species. Although our results agree with depth‐related genetic structuring inF. fragum, they did not support incipient speciation of the ‘tall’ and ‘short’ morphotypes. The preferred scenario also revealed a split between two main lineages ofF. gravida, one from Ascension Island and the other from Brazil. The Brazilian lineage is further divided into a species that occurs throughout the Northeastern coast and another that ranges from the Abrolhos Archipelago to the state of Espírito Santo. BFD* scenarios were corroborated by analyses of SNP matrices with varying levels of missing data and by a speciation‐based delimitation approach (DELINEATE). Our results challenge current notions about Atlantic reef corals because they uncovered surprising genetic diversity inFaviaand rejected the long‐standing hypothesis that Abrolhos Archipelago may have served as a Pleistocenic refuge during the last glaciations. 
    more » « less
  3. Abstract Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes. 
    more » « less
  4. The recently described crustose calcifying red algal species Ramicrusta hawaiiensis, known only from mesophotic depths off Lehua Island, west of Kaua’i Island, was found in shallow benthic reef habitats (3-18 m deep) along the western coast of Hawai’i Island. Molecular and microscopy techniques were used for genetic confirmation and for detailed morphological and anatomical examination. Two independent benthic cover survey datasets collected from west Hawai’i Island were used to investigate temporal and geographic distribution of Ramicrusta . In both datasets, we report Ramicrusta at approximately 60% of the sites surveyed. Benthic cover for this alga varies among sites and among years and its presence in west Hawai’i is evident since at least 2003. These findings help to document Hawaiian coral reef ecosystem change and benthic community composition reshuffling. This study also emphasizes the critical importance of taxonomy and proper identification of macroalgal species to understand the potential for phase-shifts of dominant taxa in coral reef ecosystems after environmental disturbances and fluctuations in abiotic factors. In the last decade, members of the red algal order Peyssonneliales have increased in abundance and overgrown other benthic species in reef ecosystems in the Caribbean and tropical Pacific. The novel aspect of finding abundant Ramicrusta in much shallower water than originally described, the decadal presence of Ramicrusta , and its potential for competition with other benthic organisms make this research valuable to coral reef ecology and justify further investigation of Ramicrusta ecology and biology in the Hawaiian Islands and globally. 
    more » « less
  5. Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleach- ing event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse. 
    more » « less