skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Translation and rotation equivariant normalizing flow (TRENF) for optimal cosmological analysis
ABSTRACT Our Universe is homogeneous and isotropic, and its perturbations obey translation and rotation symmetry. In this work, we develop translation and rotation equivariant normalizing flow (TRENF), a generative normalizing flow (NF) model which explicitly incorporates these symmetries, defining the data likelihood via a sequence of Fourier space-based convolutions and pixel-wise non-linear transforms. TRENF gives direct access to the high dimensional data likelihood p(x|y) as a function of the labels y, such as cosmological parameters. In contrast to traditional analyses based on summary statistics, the NF approach has no loss of information since it preserves the full dimensionality of the data. On Gaussian random fields, the TRENF likelihood agrees well with the analytical expression and saturates the Fisher information content in the labels y. On non-linear cosmological overdensity fields from N-body simulations, TRENF leads to significant improvements in constraining power over the standard power spectrum summary statistic. TRENF is also a generative model of the data, and we show that TRENF samples agree well with the N-body simulations it trained on, and that the inverse mapping of the data agrees well with a Gaussian white noise both visually and on various summary statistics: when this is perfectly achieved the resulting p(x|y) likelihood analysis becomes optimal. Finally, we develop a generalization of this model that can handle effects that break the symmetry of the data, such as the survey mask, which enables likelihood analysis on data without periodic boundaries.  more » « less
Award ID(s):
1839217 1814370
PAR ID:
10371042
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2363-2373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Diffusion generative models have excelled at diverse image generation and reconstruction tasks across fields. A less explored avenue is their application to discriminative tasks involving regression or classification problems. The cornerstone of modern cosmology is the ability to generate predictions for observed astrophysical fields from theory and constrain physical models from observations using these predictions. This work uses a single diffusion generative model to address these interlinked objectives—as a surrogate model or emulator for cold dark matter density fields conditional on input cosmological parameters, and as a parameter inference model that solves the inverse problem of constraining the cosmological parameters of an input field. The model is able to emulate fields with summary statistics consistent with those of the simulated target distribution. We then leverage the approximate likelihood of the diffusion generative model to derive tight constraints on cosmology by using the Hamiltonian Monte Carlo method to sample the posterior on cosmological parameters for a given test image. Finally, we demonstrate that this parameter inference approach is more robust to small perturbations of noise to the field than baseline parameter inference networks. 
    more » « less
  2. Abstract A wealth of cosmological and astrophysical information is expected from many ongoing and upcoming large-scale surveys. It is crucial to prepare for these surveys now and develop tools that can efficiently extract most information. We present HIF low : a fast generative model of the neutral hydrogen (H i ) maps that is conditioned only on cosmology (Ω m and σ 8 ) and designed using a class of normalizing flow models, the masked autoregressive flow. HIF low is trained on the state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. HIF low has the ability to generate realistic diverse maps without explicitly incorporating the expected two-dimensional maps structure into the flow as an inductive bias. We find that HIF low is able to reproduce the CAMELS average and standard deviation H i power spectrum within a factor of ≲2, scoring a very high R 2 > 90%. By inverting the flow, HIF low provides a tractable high-dimensional likelihood for efficient parameter inference. We show that the conditional HIF low on cosmology is successfully able to marginalize over astrophysics at the field level, regardless of the stellar and AGN feedback strengths. This new tool represents a first step toward a more powerful parameter inference, maximizing the scientific return of future H i surveys, and opening a new avenue to minimize the loss of complex information due to data compression down to summary statistics. 
    more » « less
  3. Abstract Current and upcoming cosmological surveys will produce unprecedented amounts of high-dimensional data, which require complex high-fidelity forward simulations to accurately model both physical processes and systematic effects which describe the data generation process. However, validating whether our theoretical models accurately describe the observed datasets remains a fundamental challenge. An additional complexity to this task comes from choosing appropriate representations of the data which retain all the relevant cosmological information, while reducing the dimensionality of the original dataset. In this work we present a novel framework combining scale-dependent neural summary statistics with normalizing flows to detect model misspecification in cosmological simulations through Bayesian evidence estimation. By conditioning our neural network models for data compression and evidence estimation on the smoothing scale, we systematically identify where theoretical models break down in a data-driven manner. We demonstrate a first application of our approach using simulated total matter and gas density fields from three hydrodynamic simulation suites with different subgrid physics implementations. 
    more » « less
  4. We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform. 
    more » « less
  5. Abstract It is well known that the power spectrum is not able to fully characterize the statistical properties of non-Gaussian density fields. Recently, many different statistics have been proposed to extract information from non-Gaussian cosmological fields that perform better than the power spectrum. The Fisher matrix formalism is commonly used to quantify the accuracy with which a given statistic can constrain the value of the cosmological parameters. However, these calculations typically rely on the assumption that the sampling distribution of the considered statistic follows a multivariate Gaussian distribution. In this work, we follow Sellentin & Heavens and use two different statistical tests to identify non-Gaussianities in different statistics such as the power spectrum, bispectrum, marked power spectrum, and wavelet scattering transform (WST). We remove the non-Gaussian components of the different statistics and perform Fisher matrix calculations with theGaussianizedstatistics using Quijote simulations. We show that constraints on the parameters can change by a factor of ∼2 in some cases. We show with simple examples how statistics that do not follow a multivariate Gaussian distribution can achieve artificially tight bounds on the cosmological parameters when using the Fisher matrix formalism. We think that the non-Gaussian tests used in this work represent a powerful tool to quantify the robustness of Fisher matrix calculations and their underlying assumptions. We release the code used to compute the power spectra, bispectra, and WST that can be run on both CPUs and GPUs. 
    more » « less