skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RELICS: small lensed z ≥ 5.5 galaxies selected as potential Lyman continuum leakers
ABSTRACT We present size measurements of 78 high-redshift (z ≥ 5.5) galaxy candidates from the Reionization Lensing Cluster Survey (RELICS). These distant galaxies are well resolved due to the gravitational lensing power of foreground galaxy clusters, imaged by the Hubble Space Telescope and the Spitzer Space Telescope. We compute sizes using the forward-modelling code lenstruction and account for magnification using public lens models. The resulting size–magnitude measurements confirm the existence of many small galaxies with effective radii Reff < 200 pc in the early Universe, in agreement with previous studies. In addition, we highlight compact and highly star-forming sources with star formation rate surface densities $$\Sigma _\text{SFR}\gt 10\, \mathrm{M}_\odot \, \text{yr}^{-1}\, \text{kpc}^{-2}$$ as possible Lyman continuum leaking candidates that could be major contributors to the process of reionization. Future spectroscopic follow-up of these compact galaxies (e.g. with the James Webb Space Telescope) will further clarify their role in reionization and the physics of early star formation.  more » « less
Award ID(s):
1815458
PAR ID:
10371077
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2162-2170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models. 
    more » « less
  2. ABSTRACT We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $$(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $$M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$$. Cluster formation is triggered when at least $$10^7\, \mathrm{M}_{\odot }$$ of dense, turbulent gas reaches $$\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $$2-3\, {\rm Gyr}$$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable. 
    more » « less
  3. ABSTRACT Characterizing the structural properties of galaxies in high-redshift protoclusters is key to our understanding of the environmental effects on galaxy evolution in the early stages of galaxy and structure formation. In this study, we assess the structural properties of 85 and 87 Hα emission-line candidates (HAEs) in the densest regions of two massive protoclusters, BOSS1244 and BOSS1542, respectively, using the Hubble Space Telescope (HST) H-band imaging data. Our results show a true pair fraction of 22 ± 5 (33 ± 6) per cent in BOSS1244 (BOSS1542), which yields a merger rate of 0.41 ± 0.09 (0.52 ± 0.04) Gyr−1 for massive HAEs with log (M*/M⊙) ≥ 10.3. This rate is 1.8 (2.8) times higher than that of the general fields at the same epoch. Our sample of HAEs exhibits half-light radii and Sérsic indices that cover a broader range than field star-forming galaxies. Additionally, about 15 per cent of the HAEs are as compact as the most massive (log (M*/M⊙) ≳ 11) spheroid-dominated population. These results suggest that the high galaxy density and cold dynamical state (i.e. velocity dispersion of <400 km s−1) are key factors that drive galaxy mergers and promote structural evolution in the two protoclusters. Our findings also indicate that both the local environment (on group scales) and the global environment play essential roles in shaping galaxy morphologies in protoclusters. This is evident in the systematic differences observed in the structural properties of galaxies between BOSS1244 and BOSS1542. 
    more » « less
  4. ABSTRACT The feedback loop between the galaxies producing the background radiation field for reionization and their growth is crucial, particularly for low-mass haloes. Despite this, the vast majority of galaxy formation studies employ a spatially uniform, time-varying reionizing background, with the majority of reionization studies employing galaxy formation models only required to work at high redshift. This paper uses the well-studied TNG galaxy formation model, calibrated at low redshift, coupled to the arepo-rt code, to self-consistently solve the coupled problems of galaxy evolution and reionization, evaluating the impact of patchy (and slow) reionization on early galaxies. thesan-hr is an extension of the thesan project to higher resolution (a factor of 50 increase, with a baryonic mass of mb ≈ 104 M⊙), to additionally enable the study of ‘mini-haloes’ with virial temperatures Tvir < 104 K. Comparing the self-consistent model to a uniform UV background, we show that galaxies in thesan-hr are predicted to be larger in physical extent (by a factor ∼2), less metal enriched (by ∼0.2 dex), and less abundant (by a factor ∼10 at M1500 =   − 10) by z = 5. We show that differences in star formation and enrichment patterns lead to significantly different predictions for star formation in low mass haloes, low-metallicity star formation, and even the occupation fraction of haloes. We posit that cosmological galaxy formation simulations aiming to study early galaxy formation (z ≳ 3) must employ a spatially inhomogeneous UV background to accurately reproduce galaxy properties. 
    more » « less
  5. ABSTRACT Dark matter haloes that reach the H i-cooling mass without prior star formation or external metal pollution represent potential sites for the formation of small – extremely faint – Population III galaxies at high redshifts. Gravitational lensing may in rare cases boost their fluxes to detectable levels, but to find even a small number of such objects in randomly selected regions of the sky requires very large areas to be surveyed. Because of this, a small, wide-field telescope can in principle offer better detection prospects than a large telescope with a smaller field of view. Here, we derive the minimum comoving number density required to allow gravitational lensing to lift such objects at redshift z = 5−16 above the detection thresholds of blind surveys carried out with the James Webb space telescope (JWST), the Roman space telescope (RST) and Euclid. We find that the prospects for photometric detections of Pop III galaxies are promising, and that they are better for RST than for JWST and Euclid. However, the Pop III galaxies favoured by current simulations have number densities too low to allow spectroscopic detections based on the strength of the He ii1640 emission line in any of the considered surveys unless very high star formation efficiencies (ϵ ≳ 0.1) are evoked. We argue that targeting individual cluster lenses instead of the wide-field surveys considered in this paper results in better spectroscopic detection prospects, while for photometric detection, the wide-field surveys perform considerably better. 
    more » « less