skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: H  i content of massive red spiral galaxies observed by FAST
ABSTRACT

A sample of 279 massive red spirals was selected optically by Guo et al., among which 166 galaxies have been observed by the ALFALFA survey. In this work, we observe H i content of the rest 113 massive red spiral galaxies using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). 75 of the 113 galaxies have H i detection with a signal-to-noise ratio (S/N) greater than 4.7. Compared with the red spirals in the same sample that have been observed by the ALFALFA survey, galaxies observed by FAST have on average a higher S/N, and reach to a lower H i mass. To investigate why many red spirals contain a significant amount of H i mass, we check colour profiles of the massive red spirals using images observed by the DESI Legacy Imaging Surveys. We find that galaxies with H i detection have bluer outer discs than the galaxies without H i detection, for both ALFALFA and FAST samples. For galaxies with H i detection, there exists a clear correlation between galaxy H i mass and g-r colour at outer radius: galaxies with higher H i masses have bluer outer discs. The results indicate that optically selected massive red spirals are not fully quenched, and the H i gas observed in many of the galaxies may exist in their outer blue discs.

 
more » « less
NSF-PAR ID:
10371080
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2337-2347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Arecibo Pisces-Perseus Supercluster Survey(APPSS) aims to measure the infall and mass density along the PPS filament using red-shift independent distances obtained from the Baryonic Tully-Fisher Relation (BTFR). We will combine photometric data from the Sloan Digital Sky Survey with HI line spectroscopy obtained with the Arecibo telescope to derive BTFR distances and peculiar velocities over the PPS volume and its immediate foreground and background. To supplement the ALFALFA detections in the PPS volume, we have conducted new HI line observations with the Arecibo L-band Wide receiver system of blue, low surface brightness galaxies identified by their photometric properties in the Sloan Digital Sky Survey (SDSS). These targets are predicted to lie in the PPS volume but with HI masses of 8.0 < log HI mass < 9.0, putting them below the ALFALFA detection limit at that distance. We compare a preliminary sample of 634 galaxies detected as part from the APPSS survey with the main ALFALFA survey and other public catalogs of local galaxies, confirming that the new APPSS HI line detections are rotation-dominated, HI bearing galaxies with low stellar mass. Nearly all are star-forming, bluer, and of lower surface brightness, extinction and metallicity than optically selected samples. Preliminary BTFRs were calculated for both APPSS and ALFALFA galaxies and compared with BTFRs of simulated galaxies similar to those found in APPSS and ALFALFA using simulations such as IllustrisTNG (see poster by J. Borden). This work has been supported by NSF/AST-1714828 and the Brinson Foundation. 
    more » « less
  2. ABSTRACT

    In our hierarchical structure-formation paradigm, the observed morphological evolution of massive galaxies – from rotationally supported discs to dispersion-dominated spheroids – is largely explained via galaxy merging. However, since mergers are likely to destroy discs, and the most massive galaxies have the richest merger histories, it is surprising that any discs exist at all at the highest stellar masses. Recent theoretical work by our group has used a cosmological, hydrodynamical simulation to suggest that extremely massive (M* > 1011.4 M⊙) discs form primarily via minor mergers between spheroids and gas-rich satellites, which create new rotational stellar components and leave discs as remnants. Here, we use UV-optical and H i data of massive galaxies, from the Sloan Digital Sky Survey, Galaxy Evolution Explorer, Dark Energy Camera Legacy Survey (DECaLS), and Arecibo Legacy Fast ALFA surveys, to test these theoretical predictions. Observed massive discs account for ∼13 per cent of massive galaxies, in good agreement with theory (∼11 per cent). ∼64 per cent of the observed massive discs exhibit tidal features, which are likely to indicate recent minor mergers, in the deep DECaLS images (compared to ∼60 per cent in their simulated counterparts). The incidence of these features is at least four times higher than in low-mass discs, suggesting that, as predicted, minor mergers play a significant (and outsized) role in the formation of these systems. The empirical star formation rates agree well with theoretical predictions and, for a small galaxy sample with H i detections, the H i masses and fractions are consistent with the range predicted by the simulation. The good agreement between theory and observations indicates that extremely massive discs are indeed remnants of recent minor mergers between spheroids and gas-rich satellites.

     
    more » « less
  3. ABSTRACT

    We present a catalogue of 16 551 edge-on galaxies created using the public DR2 data of the Pan-STARRS survey. The catalogue covers the three quarters of the sky above Dec. = −30°. The galaxies were selected using a convolutional neural network, trained on a sample of edge-on galaxies identified earlier in the SDSS survey. This approach allows us to dramatically improve the quality of the candidate selection and perform a thorough visual inspection in a reasonable amount of time. The catalogue provides homogeneous information on astrometry, SExtractor photometry, and non-parametric morphological statistics of the galaxies. The photometry is reliably for objects in the 13.8–17.4 r-band magnitude range. According to the HyperLeda data base, redshifts are known for about 63 per cent of the galaxies in the catalogue. Our sample is well separated into the red sequence and blue cloud galaxy populations. The edge-on galaxies of the red sequence are systematically Δ(g − i) ≈ 0.1 mag redder than galaxies oriented at an arbitrary angle to the observer. We found a variation of the galaxy thickness with the galaxy colour. The red sequence galaxies are thicker than the galaxies of the blue cloud. In the blue cloud, on average, thinner galaxies turn out to be bluer. In the future, based on this catalogue it is intended to explore the three-dimensional structure of galaxies of different morphologies, as well as to study the scaling relations for discs and bulges.

     
    more » « less
  4. Abstract

    We present deep optical imaging and photometry of four objects classified as “Almost-Dark” galaxies in the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey because of their gas-rich nature and extremely faint or missing optical emission in existing catalogs. They have Himasses of 107–109Mand distances of ∼9–100 Mpc. Observations with the WIYN 3.5 m telescope and One Degree Imager reveal faint stellar components with central surface brightnesses of ∼24–25magarcsec2in thegband. We also present the results of Hisynthesis observations with the Westerbork Synthesis Radio Telescope. These Almost-Dark galaxies have been identified as possible tidal dwarf galaxies (TDGs) based on their proximity to one or more massive galaxies. We demonstrate that AGC 229398 and AGC 333576 likely have the low dark matter content and large effective radii representative of TDGs. They are located much farther from their progenitors than previously studied TDGs, suggesting they are older and more evolved. AGC 219369 is likely dark matter dominated, while AGC 123216 has a dark matter content that is unusually high for a TDG, but low for a normal dwarf galaxy. We consider possible mechanisms for the formation of the TDG candidates such as a traditional major merger scenario and gas ejection from a high-velocity flyby. Blind Hisurveys like ALFALFA enable the detection of gas-rich, optically faint TDGs that can be overlooked in other surveys, thereby providing a more complete census of the low-mass galaxy population and an opportunity to study TDGs at a more advanced stage of their life cycle.

     
    more » « less
  5. ABSTRACT

    Intensity mapping experiments are beginning to measure the spatial distribution of neutral atomic hydrogen H i to constrain cosmological parameters and the large-scale distribution of matter. However, models of the behaviour of H i as a tracer of matter are complicated by galaxy evolution. In this work, we examine the clustering of H i in relation to galaxy colour, stellar mass, and H i mass in IllustrisTNG at z  = 0, 0.5, and 1. We compare the H i-red and H i-blue galaxy cross-power spectra, finding that H i-red has an amplitude 1.5 times greater than H i-blue at large scales. The cross-power spectra intersect at ≈3 Mpc in real space and ≈10 Mpc in redshift space, consistent with z ≈ 0 observations. We show that H i clustering increases with galaxy H i mass and depends weakly on detection limits in the range MH i ≤ 108 M⊙. In terms of M⋆, we find massive blue galaxies cluster more than less massive ones. Massive red galaxies, however, cluster the weakest amongst red galaxies. These opposing trends arise from central-satellite compositions. Despite these M⋆ trends, we find that the cross-power spectra are largely insensitive to detection limits in galaxy surveys. Counter-intuitively, all auto and cross-power spectra for red and blue galaxies and H i decrease with time at all scales. We demonstrate that processes associated with quenching contribute to this trend. The complex interplay between H i and galaxies underscores the importance of understanding baryonic effects when interpreting the large-scale clustering of H i, blue, and red galaxies at z ≤ 1.

     
    more » « less