skip to main content

Title: Mid‐ to Far‐Infrared Anisotropic Dielectric Function of HfS 2 and HfSe 2

The far‐infrared (far‐IR) remains a relatively underexplored region of the electromagnetic spectrum extending roughly from 20 to 100 µm in free‐space wavelength. Research within this range has been restricted due to a lack of optical materials that can be optimized to reduce losses and increase sensitivity, as well as by the long free‐space wavelengths associated with this spectral region. Here the exceptionally broad Reststrahlen bands of two Hf‐based transition metal dichalcogenides (TMDs) that can support surface phonon polaritons (SPhPs) within the mid‐infrared (mid‐IR) into the terahertz (THz) are reported. In this vein, the IR transmission and reflectance spectra of hafnium disulfide (HfS2) and hafnium diselenide (HfSe2) flakes are measured and their corresponding dielectric functions are extracted. These exceptionally broad Reststrahlen bands (HfS2: 165 cm−1; HfSe2: 95 cm−1) dramatically exceed that of the more commonly explored molybdenum‐ (Mo) and tungsten‐ (W) based TMDs (≈5–10 cm−1), which results from the over sevenfold increase in the Born effective charge of the Hf‐containing compounds. This work therefore identifies a class of materials for nanophotonic and sensing applications in the mid‐ to far‐IR, such as deeply sub‐diffractional hyperbolic and polaritonic optical antennas, as is predicted via electromagnetic simulations using the extracted dielectric function.

more » « less
Award ID(s):
1904793 2128240 1904760 1852157
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present mid-IR spectroscopic characterization of the low-phonon chalcogenide glass, Ga2Ge5S13(GGS) doped with Er3+ions. Under the excitation at ∼800 nm, Er3+:GGS exhibited broad mid-IR emission bands centered at ∼2.7, ∼3.5, and ∼4.5 µm at room temperature. The emission lifetime of the4I9/2level of Er3+ions in GGS glass was found to be millisecond-long at room temperature. The measured fluorescence lifetimes were nearly independent of temperature, indicating negligibly small nonradiative decay rate for the4I9/2state, as can be expected for a low-maximum-phonon energy host. The transition line-strengths, radiative lifetimes, fluorescence branching ratios were calculated by using the Judd-Ofelt method. The peak stimulated emission cross-section of the4I9/24I11/2transition of Er3+ion was determined to be ∼0.10×10−20cm2at room temperature.

    more » « less
  2. Abstract

    In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups.

    more » « less
  3. X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS 3 at the Au/HfS 3 interface. XPS measurements reveal dissociative chemisorption of O 2 , leading to the formation of an oxide of Hf at the surface of HfS 3 . This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O 2 and H 2 O, are likely responsible for the observed p-type characteristics of HfS 3 reported elsewhere. HfS 3 devices exhibit n-type behaviour if measured in vacuum but turn p-type in air. Au thickness-dependent XPS measurements provide clear evidence of band bending as the S 2p and Hf 4f core-level peak binding energies for Au/HfS 3 are found to be shifted to higher binding energies. This band bending implies formation of a Schottky-barrier at the Au/HfS 3 interface, which explains the low measured charge carrier mobilities of HfS 3 -based devices. The transistor measurements presented herein also indicate the existence of a Schottky barrier, consistent with the XPS core-level binding energy shifts, and show that the bulk of HfS 3 is n-type. 
    more » « less
  4. Abstract

    The anisotropic dielectric functions (DF) of corundum structuredm-planeα-(AlxGa1−x)2O3thin films (up tox= 0.76) grown onm-plane sapphire substrate by metalorganic CVD have been investigated. IR and visible–UV spectroscopic ellipsometry yields the DFs, while X-ray diffraction revealed the lattice parameters (a,m,c), showing the samples are almost fully relaxed. Analysis of the IR DFs from 250 to 6000 cm−1by a complex Lorentz oscillator model yields the anisotropic IR active phononsEuandA2uand the shift towards higher wavenumbers with increasing Al content. Analyzing the UV DFs from 0.5 to 6.6 eV we find the change in the dielectric limitsεand the shift of the Γ-point transition energies with increasing Al content. This results in anisotropic bowing parameters forα-(AlxGa1−x)2O3ofb= 2.1 eV andb∣∣= 1.7 eV.

    more » « less
  5. Abstract

    We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity,ICO, and mid-IR intensity,IMIR, at 8, 12, 22, and 24μm. TheICOversusIMIRrelationship is reasonably described by a power law with slopes 0.7–1.2 and normalizationICO∼ 1 K km s−1atIMIR∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer thatR21IMIR0.2, in good agreement with other work. The 8μm and 12μm bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24μm, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M) and anticorrelates with star formation rate/M. At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities.

    more » « less