skip to main content


Title: Accelerated Growth of Seed Black Holes by Dust in the Early Universe
Abstract

We explore the effect of dust on the growth of seed black holes (BHs) in the early universe. Previous 1D radiation-hydrodynamic (RHD) simulations show that increased radiation pressure on dust further suppresses the accretion rate than the case for the chemically pristine gas. Using the Enzo+Moray code, we perform a suite of 3D RHD simulations of accreting BHs in a dusty interstellar medium (ISM). We use the modified Grackle cooling library to consider dust physics in its nonequilibrium chemistry. The BH goes through an early evolutionary phase, where ionizing BH radiation creates an oscillating Hiiregion as it cycles between accretion and feedback. As the simulations proceed, dense cold gas accumulates outside the ionized region where inflow from the neutral medium meets the outflow driven by radiation pressure. In the late phase, high-density gas streams develop and break the quasi-spherical symmetry of the ionized region, rapidly boosting the accretion rate. The late phase is characterized by the coexistence of strong ionized outflows and fueling high-density gas inflows. The mean accretion rate increases with metallicity reaching a peak atZ∼ 0.01–0.1Z, one order of magnitude higher than the one for pristine gas. However, as the metallicity approaches the solar abundance, the mean accretion rate drops as the radiation pressure becomes strong enough to drive out the high-density gas. Our results indicate that a dusty metal-poor ISM can accelerate the growth rate of BHs in the early universe, but can also stun its growth as the ISM is further enriched toward the solar abundance.

 
more » « less
NSF-PAR ID:
10371097
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
936
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 116
Size(s):
["Article No. 116"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Characterizing the physical conditions (density, temperature, ionization state, metallicity, etc) of the interstellar medium is critical to improving our understanding of the formation and evolution of galaxies. In this work, we present a multi-line study of the interstellar medium in the host galaxy of a quasar atz ≈ 6.4, that is, when the universe was 840 Myr old. This galaxy is one of the most active and massive objects emerging from the dark ages and therefore represents a benchmark for models of the early formation of massive galaxies. We used the Atacama Large Millimeter Array to target an ensemble of tracers of ionized, neutral, and molecular gas, namely the following fine-structure lines: [O III] 88 μm, [N II] 122 μm, [C II] 158 μm, and [C I] 370 μm – as well as the rotational transitions of CO(7–6), CO(15–14), CO(16–15), and CO(19–18); OH 163.1 μm and 163.4 μm; along with H2O 3(0,3)–2(1,2), 3(3,1)–4(0,4), 3(3,1)–3(2,2), 4(0,4)–3(1,3), and 4(3,2)–4(2,3). All the targeted fine-structure lines were detected, along with half of the targeted molecular transitions. By combining the associated line luminosities with the constraints on the dust temperature from the underlying continuum emission and predictions from photoionization models of the interstellar medium, we find that the ionized phase accounts for about one-third of the total gaseous mass budget and is responsible for half of the total [C II] emission. This phase is characterized by a high density (n ∼ 180 cm−3) that typical of HII regions. The spectral energy distribution of the photoionizing radiation is comparable to that emitted by B-type stars. Star formation also appears to be driving the excitation of the molecular medium. We find marginal evidence for outflow-related shocks in the dense molecular phase, but not in other gas phases. This study showcases the power of multi-line investigations in unveiling the properties of the star-forming medium in galaxies at cosmic dawn.

     
    more » « less
  2. ABSTRACT

    Formation of supermassive black holes (BHs) remains a theoretical challenge. In many models, especially beginning from stellar relic ‘seeds,’ this requires sustained super-Eddington accretion. While studies have shown BHs can violate the Eddington limit on accretion disc scales given sufficient ‘fuelling’ from larger scales, what remains unclear is whether or not BHs can actually capture sufficient gas from their surrounding interstellar medium (ISM). We explore this in a suite of multiphysics high-resolution simulations of BH growth in magnetized, star-forming dense gas complexes including dynamical stellar feedback from radiation, stellar mass-loss, and supernovae, exploring populations of seeds with masses $\sim 1\!-\!10^{4}\, \mathrm{M}_{\odot }$. In this initial study, we neglect feedback from the BHs: so this sets a strong upper limit to the accretion rates seeds can sustain. We show that stellar feedback plays a key role. Complexes with gravitational pressure/surface density below $\sim 10^{3}\, \mathrm{M}_{\odot }\, {\rm pc^{-2}}$ are disrupted with low star formation efficiencies so provide poor environments for BH growth. But in denser cloud complexes, early stellar feedback does not rapidly destroy the clouds but does generate strong shocks and dense clumps, allowing $\sim 1{{\ \rm per\ cent}}$ of randomly initialized seeds to encounter a dense clump with low relative velocity and produce runaway, hyper-Eddington accretion (growing by orders of magnitude). Remarkably, mass growth under these conditions is almost independent of initial BH mass, allowing rapid intermediate-mass black hole (IMBH) formation even for stellar-mass seeds. This defines a necessary (but perhaps not sufficient) set of criteria for runaway BH growth: we provide analytic estimates for the probability of runaway growth under different ISM conditions.

     
    more » « less
  3. ABSTRACT

    The early growth of black holes (BHs) in high-redshift galaxies is likely feedback regulated. While radiative feedback has been extensively studied, the role of mechanical feedback has received less scrutiny to date. Here, we use high-resolution parsec-scale hydrodynamical simulations to study jet propagation and its effect on 100 M⊙ BH accretion in the dense, low-metallicity gas expected in early protogalaxies. As the jet propagates, it shocks the surrounding gas forming a jet cocoon. The cocoon consists of a rapidly cooling cold phase at the interface with the background gas and an overpressured subsonic phase of reverse shock-heated gas filling the interior. We vary the background gas density and temperature, BH feedback efficiency, and the jet model. We found that the width of the jet cocoon roughly follows a scaling derived by assuming momentum conservation in the jet-propagation direction and energy conservation in the lateral directions. Depending on the assumed gas and jet properties, the cocoon either stays elongated to large radii or isotropizes before reaching the Bondi radius, forming a nearly spherical bubble. Lower jet velocities and higher background gas densities result in self-regulation to higher momentum fluxes and elongated cocoons. In all cases, the outward cocoon momentum flux balances the inward inflowing gas momentum flux near the Bondi radius, which ultimately regulates BH accretion. The time-averaged accretion rate always remains below the Bondi rate, and exceeds the Eddington rate only if the ambient medium is dense and cold, and/or the jet is weak (low velocity and mass loading).

     
    more » « less
  4. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

     
    more » « less
  5. Abstract

    With ΣSFR∼ 4200Myr−1kpc−2, SPT 0346–52 (z= 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii] 205μm, [Cii] 158μm, [Oi] 146μm, and undetected [Nii] 122μm and [Oi] 63μm emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudyand find a supersolar metallicity system. We calculateTdust= 48.3 K andλpeak= 80μm and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withne< 32 cm−3, while ∼20% of the [Cii] 158μm emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass.

     
    more » « less