skip to main content

Title: The Relationship Between Delta Form and Nitrate Retention Revealed by Numerical Modeling Experiments

River deltas display a wide range of morphologic patterns that influence how nutrients interact in channels and wetlands on their way to the coast. To quantify the role of delta morphology on nitrate fate, we simulated reactive nitrate transport over steady base flow conditions for six synthetic, morphologically unique river‐dominated deltas created in Delft3D by varying incoming grain size distributions. We parameterized nitrate removal kinetics using an observed relationship with elevation from Wax Lake Delta (Louisiana, USA). Total nitrate retention across the six synthetic deltas and Wax Lake Delta ranged from 1.3%‐13%, suggesting that these river‐dominated deltas have limited ability to remove nitrate from incoming river water. Nitrate removal is constrained by limited hydrologic connectivity with the areas of greatest nitrate demand, which are found at higher elevation. In these synthetic numerical experiments, the efficiency of nitrate removal is greatest for deltas with more topologic complexity and greater proportions of the delta plain at higher elevation, which are both common characteristics of coarser‐grained deltas. The positive relationship between grain size and nitrate removal may help guide land reclamation projects if project goals include minimizing nitrate export to the sea.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human activities have increased nitrate export from rivers, degrading coastal water quality. At deltaic river mouths, the flow of water through wetlands increases nitrate removal, and the spatial organization of removal rates influences coastal water quality. To understand the spatial distribution of nitrate removal in a river‐dominated delta, we deployed 23 benthic chambers across ecogeomorphic zones with varying elevation, vegetation, and sediment properties in Wax Lake Delta (Louisiana, USA) in June 2018. Regression analyses indicate that normalized difference vegetation index is a useful predictor of summertime nitrate removal. Mass transfer velocity were approximately three times greater on a vegetated submerged levee (13 mm hr−1), where normalized difference vegetation index was greatest, compared to other locations (4.6 mm hr−1). Two methods were developed to upscale nitrate removal across the delta. The flooded‐delta method integrates spatially explicit potential removal rates across submerged portions of the delta and suggests that intermediate elevations on the delta—including submerged levees—are responsible for 70% of potential nitrate removal despite covering only 33% of the flooded area. The channel network method treats the delta as a network of river channels and suggests that although secondary channels are more efficient than primary channels at removing received nitrate, primary channels collectively contribute more to overall removal because they convey more of the total nitrate load. The two upscaling methods predict similar rates of nitrate removal, equivalent to less than 4% of nitrate entering the delta. To protect coastal waters against high nitrate loads, management policies should aim to reduce upstream nutrient loads.

    more » « less
  2. Abstract

    Wax Lake Delta, southern Louisiana, is a coastal delta that formed following the dredging of a river channel in 1941 and is a field model for investigating the geomorphology, ecology, carbon dynamics, and carbon storage capacity in young prograding deltas. However, it is unknown how the transition from subaqueous to subaerial sediments affects the sources and quality of the sequestered carbon. We investigated these variations within the sediments of Wax Lake Delta using amino acid, lignin, and stable carbon isotope compositions of the organic matter (OM). A principal component analysis of these proxies highlighted variability in organic carbon (OC) composition with changes in elevation. The transition from subaqueous to subaerial sediments at 0‐cm mean lower low water is an important component of the OM composition. In addition to the changes observed for OM source and quality, the OC loadings (OC/SA; mg C/m2) also increase as the delta aggrades and accumulates sediments with loadings typical of delta topsets and mobile mud banks (OC/SA < 0.4) to riverine sediments (0.5 < OC/SA < 1) and eventually to highly productive regions (OC/SA > 1). Linking this multiproxy approach with environmental variables such as elevation provides a path for incorporating OM dynamics into geomorphic models.

    more » « less
  3. We propose an exploratory model to describe the morphodynamics of distributary channel network growth on river deltas. The interface between deep channels and the shallow, unchannelized delta front deposits is modeled as a moving boundary. Steady flow over the unchannelized delta front is friction dominated and modeled by Laplace's equation. Shear stress along the network boundary produces nonlinear erosion rates at the interface, causing the boundary to move and network elements (channels and branches) to form. The model was run for boundary conditions resembling the Wax Lake Delta in coastal Louisiana, 20 parameterizations of sediment transport, and 3 parameterizations of discharge. In each case, the model produced a complex channel network with channel number, width, bifurcation angle, and channel shape depending on the sediment transport formula. For reasonable sediment transport parameters and gradually increasing water discharge, the model produced network characteristics and progradation rates similar to the Wax Lake Delta. This suggests that the model contains the processes responsible for network growth, despite its abstract formulation.

    more » « less
  4. Abstract

    Estimates of nitrate loading to the Arctic Ocean are limited by the lack of field observations within deltas partly due to logistical constraints. To overcome this limitation, we use a remote sensing framework to estimate retention of nitrate in Arctic deltas. We achieve this by coupling hydrological and biogeochemical process models at the network scale for five major Arctic deltas. Binary masks of delta channels were used to simulate flow direction and magnitude through networks. Models were parameterized using historical and seasonal observations. Simulated nitrate retention ranged from 2.9% to 15% of the incoming load. Retention rates were largest during winter but smallest during spring conditions when increased discharges export large nitrate masses to the coast. Under future climate scenarios, retention rates fall by ∼1%–10%. Arctic deltas have an important effect on the magnitude of nitrate entering Arctic seas and the inclusion of processing in deltas can improve flux estimates.

    more » « less
  5. Abstract

    Channel bifurcations control the distribution of water and sediment in deltas, and the routing of these materials facilitates land building in coastal regions. Yet few practical methods exist to provide accurate predictions of flow partitioning at multiple bifurcations within a distributary channel network. Herein, multiple nodal relations that predict flow partitioning at individual bifurcations, utilizing various hydraulic and channel planform parameters, are tested against field data collected from the Selenga River delta, Russia. The data set includes 2.5 months of time‐continuous, synoptic measurements of water and sediment discharge partitioning covering a flood hydrograph. Results show that width, sinuosity, and bifurcation angle are the best remotely sensed, while cross‐sectional area and flow depth are the best field measured nodal relation variables to predict flow partitioning. These nodal relations are incorporated into a graph model, thus developing a generalized framework that predicts partitioning of water discharge and total, suspended, and bedload sediment discharge in deltas. Results from the model tested well against field data produced for the Wax Lake, Selenga, and Lena River deltas. When solely using remotely sensed variables, the generalized framework is especially suitable for modeling applications in large‐scale delta systems, where data and field accessibility are limited.

    more » « less