skip to main content

Title: A Hierarchy of Global Ocean Models Coupled to CESM1

We develop a hierarchy of simplified ocean models for coupled ocean, atmosphere, and sea ice climate simulations using the Community Earth System Model version 1 (CESM1). The hierarchy has four members: a slab ocean model, a mixed‐layer model (MLM) with entrainment and detrainment, an Ekman MLM, and an ocean general circulation model (OGCM). Flux corrections of heat and salt are applied to the simplified models ensuring that all hierarchy members have the same climatology. We diagnose the needed flux corrections from auxiliary simulations in which we restore the temperature and salinity to the daily climatology obtained from a target CESM1 simulation. The resulting three‐dimensional corrections contain the interannual variability fluxes that maintain the correct vertical gradients of temperature and salinity in the tropics. We find that the inclusion of mixed‐layer entrainment and Ekman flow produces sea surface temperature and surface air temperature fields whose means and variances are progressively more similar to those produced by the target CESM1 simulation. We illustrate the application of the hierarchy to the problem of understanding the response of the climate system to the loss of Arctic sea ice. We find that the shifts in the positions of the mid‐latitude westerly jet and of the Inter‐tropical Convergence Zone (ITCZ) in response to sea‐ice loss depend critically on upper ocean processes. Specifically, heat uptake associated with the mixed‐layer entrainment influences the shift in the westerly jet and ITCZ. Moreover, the shift of ITCZ is sensitive to the form of Ekman flow parameterization.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthropogenic influences have led to a strengthening and poleward shift of westerly winds over the Southern Ocean, especially during austral summer. We use observations, an idealized eddy‐resolving ocean sea ice channel model, and a global coupled model to explore the Southern Ocean response to a step change in westerly winds. Previous work hypothesized a two time scale response for sea surface temperature. Initially, Ekman transport cools the surface before sustained upwelling causes warming on decadal time scales. The fast response is robust across our models and the observations: We find Ekman‐driven cooling in the mixed layer, mixing‐driven warming below the mixed layer, and a small upwelling‐driven warming at the temperature inversion. The long‐term response is inaccessible from observations. Neither of our models shows a persistent upwelling anomaly, or long‐term, upwelling‐driven subsurface warming. Mesoscale eddies act to oppose the anomalous wind‐driven upwelling, through a process known as eddy compensation, thereby preventing long‐term warming.

    more » « less
  2. Abstract

    We compare the vertical hydrography of the Community Earth System Model Large Ensemble (CESM1‐LE) with observations from two specific periods: the Arctic Ice Dynamics Joint Experiment (AIDJEX; 1975–1976) and Ice‐Tethered Profilers (ITP; 2004–2018). A comparison between simulated and observed salinity and potential temperature profiles highlights two key model biases in all ensemble members: (a) an absence of Pacific Waters in the water column and (b) a slight deepening of the May mixed layer contrary to observations, which show a large reduction in the mixed‐layer depth and an increase in stratification over the same time period. We examine processes controlling the sea ice mass balance using a one‐dimensional vertical heat budget in the light of the model limitations implied by these two biases. Results indicate that remnant solar heat trapped beneath the halocline is mostly ventilated to the surface by mixing before the following melt season. Furthermore, we find that vertical advection associated with Ekman pumping has only a small effect on the vertical heat transport, even in early fall when the winds are strong and the pack ice is weak. Lastly, we estimate the impact of the missing Pacific Waters at 0.40 m of reduced winter ice growth.

    more » « less
  3. Abstract

    Ocean‐to‐ice heat flux (OHF) is important in regulating the variability of sea ice mass balance. Using surface drifting buoy observations, we show that during winter in the Arctic Ocean's Beaufort Gyre region, OHF increased from 0.76 ± 0.05 W/m2over 2006–2012 to 1.63 ± 0.08 W/m2over 2013–2018. We find that this is a result of thinner and less‐compact sea ice that promotes enhanced winter ice growth, stronger ocean vertical convection, and subsurface heat entrainment. In contrast, Ekman upwelling declined over the study period, suggesting it had a secondary contribution to OHF changes. The enhanced ice growth creates a cooler, saltier, and deeper ocean surface mixed layer. In addition, the enhanced vertical temperature gradient near the mixed layer base in later years favors stronger entrainment of subsurface heat. OHF and its increase during 2006–2018 were not geographically uniform, with hot spots found in an upwelling region where ice was most seasonally variable.

    more » « less
  4. Abstract

    In recent years, the Southern Ocean has experienced unprecedented surface warming and sea ice loss—a stark reversal of the sea ice expansion and surface cooling that prevailed over the preceding decades. Here, we examine the mechanisms that led to the abrupt circumpolar surface warming events that occurred in late 2016 and 2019 and assess the role of internal climate variability. A mixed layer heat budget analysis reveals that these recent circumpolar surface warming events were triggered by a weakening of the circumpolar westerlies, which decreased northward Ekman transport and accelerated the seasonal shoaling of the mixed layer. We emphasize the underappreciated effect of the latter mechanism, which played a dominant role and amplified the warming effect of air–sea heat fluxes during months of peak solar insolation. An examination of the CESM1 large ensemble demonstrates that these recent circumpolar warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM), whereby negative SAM in austral spring favors shallower mixed layers and anomalously high summertime SST. A key insight from this analysis is that the seasonal phasing of springtime mixed layer depth shoaling is an important contributor to summertime SST variability in the Southern Ocean. Thus, future Southern Ocean summertime SST extremes will depend on the coevolution of mixed layer depth and surface wind variability.

    Significance Statement

    This study examines how reductions in the strength of the circumpolar westerlies can produce abrupt and extreme surface warming across the Southern Ocean. A key insight is that the mixed layer temperature is most sensitive to surface wind perturbations in late austral spring, when the regional mixed layer depth and solar insolation approach their respective seasonal minimum and maximum. This heightened surface temperature response to surface wind variability was realized during the austral spring of 2016 and 2019, when a dramatic weakening of the circumpolar westerlies triggered unprecedented warming across the Southern Ocean. In both cases, the anomalously weak circumpolar winds reduced the northward Ekman transport of cool subpolar waters and caused the mixed layer to shoal more rapidly in the spring, with the latter mechanism being more dominant. Using results from an ensemble of coupled climate simulations, we demonstrate that the 2016 and 2019 Southern Ocean warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM). These results suggest that future Southern Ocean surface warming extremes will depend on both the evolution of regional mixed layer depths and interannual wind variability.

    more » « less
  5. Abstract

    Intense storms have been more frequently observed in the Arctic during recent years, in coincidence with extreme sea ice loss events. However, it is still not fully understood how storms drive such events due to deficient observations and modeling discrepancies. Here we address this problem by analyzing in situ observations acquired during an Arctic expedition, which uniquely captured an intense storm in summer 2016. The result shows a pronounced acceleration of sea ice loss during the storm process. Diagnostic analysis indicates a net energy loss at the ice surface, not supporting the accelerated melting. Although the open water surface gained net heat energy, it was insufficient to increase the mixed‐layer temperature to the observed values. Dynamic analysis suggests that storm‐driven increase in ocean mixing and upward Ekman pumping of the Pacific‐origin warm water tremendously increased oceanic heat flux. The thermal advection by the Ekman pumping led to a warmed mixed layer by 0.05°C–0.12°C and, in consequence, an increased basal sea ice melt rate by 0.1–1.7 cm day−1.

    more » « less