skip to main content

Title: Revising Properties of Planet–Host Binary Systems. II. Apparent Near-Earth-analog Planets in Binaries Are Often Sub-Neptunes*

Identifying rocky planets in or near the habitable zones of their stars (near-Earth analogs) is one of the key motivations of many past and present planet-search missions. The census of near-Earth analogs is important because it informs calculations of the occurrence rate of Earth-like planets, which in turn feed into calculations of the yield of future missions to directly image other Earths. Only a small number of potential near-Earth analogs have been identified, meaning that each planet should be vetted carefully and then incorporated into the occurrence rate calculation. A number of putative near-Earth analogs have been identified within binary-star systems. However, stellar multiplicity can bias measured planetary properties, meaning that apparent near-Earth analogs in close binaries may have different radii or instellations than initially measured. We simultaneously fit unresolved optical spectroscopy, optical speckle and near-IR adaptive optics contrasts, and unresolved photometry and retrieved revised stellar temperatures and radii for a sample of 11 binary Kepler targets that host at least one near-Earth-analog planet, for a total of 17 planet candidates. We found that 10 of the 17 planets in our sample had radii that fell in or above the radius gap, suggesting that they are not rocky planets. more » Only two planets retained super-Earth radii and stayed in the habitable zone, making them good candidates for inclusion in rocky-planet occurrence rate calculations.

« less
Publication Date:
Journal Name:
The Astronomical Journal
Page Range or eLocation-ID:
Article No. 138
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Kepler and TESS missions have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here, we introduce the TESS-Keck Survey (TKS), an RV program using ∼100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K ≤ T eff <6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets ( R p ≤ 4 R ⊕ ), 11 systems with multiple transiting candidates, sixmore »sub-day-period planets and three planets that are in or near the habitable zone ( S inc ≤ 10 S ⊕ ) of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available and can be adapted for any survey that requires a balance of multiple science interests within a given telescope allocation.« less
  2. Abstract

    Characterizing the masses and orbits of near-Earth-mass planets is crucial for interpreting observations from future direct imaging missions (e.g., HabEx, LUVOIR). Therefore, the Exoplanet Science Strategy report recommended further research so future extremely precise radial velocity surveys could contribute to the discovery and/or characterization of near-Earth-mass planets in the habitable zones of nearby stars prior to the launch of these future imaging missions. Newman et al. (2023) simulated such 10 yr surveys under various telescope architectures, demonstrating they can precisely measure the masses of potentially habitable Earth-mass planets in the absence of stellar variability. Here, we investigate the effect of stellar variability on the signal-to-noise ratio (S/N) of the planet mass measurements in these simulations. We find that correlated noise due to active regions has the largest effect on the observed mass S/N, reducing the S/N by a factor of ∼5.5 relative to the no-variability scenario; granulation reduces by a factor of ∼3, while p-mode oscillations has little impact on the proposed survey strategies. We show that in the presence of correlated noise, 5 cm s−1instrumental precision offers little improvement over 10 cm s−1precision, highlighting the need to mitigate astrophysical variability. With our noise models, extending the survey tomore »15 yr doubles the number of Earth-analogs with mass S/N > 10, and reaching this threshold for any Earth-analog orbiting a star >0.76Min a 10 yr survey would require an increase in the number of observations per star from that in Newman et al. (2023).

    « less
  3. Abstract We present the occurrence rates for rocky planets in the habitable zones (HZs) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define η ⊕ as the HZ occurrence of planets with radii between 0.5 and 1.5 R ⊕ orbiting stars with effective temperatures between 4800 and 6300 K. We find that η ⊕ for the conservative HZ is between (errors reflect 68% credible intervals) and planets per star, while the optimistic HZ occurrence is between and planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates between using Poisson likelihood Bayesian analysis and using Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with 95% confidence that, on average,more »the nearest HZ planet around G and K dwarfs is ∼6 pc away and there are ∼4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.« less
  4. ABSTRACT We demonstrate that the James Webb Space Telescope (JWST) can detect infrared (IR) excess from the blended light spectral energy distribution of spatially unresolved terrestrial exoplanets orbiting nearby white dwarfs. We find that JWST is capable of detecting warm (habitable-zone; Teq = 287 K) Earths or super-Earths and hot (400–1000 K) Mercury analogues in the blended light spectrum around the nearest 15 isolated white dwarfs with 10 h of integration per target using MIRI’s medium-resolution spectrograph (MRS). Further, these observations constrain the presence of a CO2-dominated atmosphere on these planets. The technique is nearly insensitive to system inclination, and thus observation of even a small sample of white dwarfs could place strong limits on the occurrence rates of warm terrestrial exoplanets around white dwarfs in the solar neighbourhood. We find that JWST can also detect exceptionally cold (100–150 K) Jupiter-sized exoplanets via MIRI broad-band imaging at $\lambda = 21\, \mathrm{\mu m}$ for the 34 nearest (<13 pc) solitary white dwarfs with 2 h of integration time per target. Using IR excess to detect thermal variations with orbital phase or spectral absorption features within the atmosphere, both of which are possible with long-baseline MRS observations, would confirm candidates as actual exoplanets. Assuming an Earth-like atmospheric composition,more »we find that the detection of the biosignature pair O3+CH4 is possible for all habitable-zone Earths (within 6.5 pc; six white dwarf systems) or super-Earths (within 10 pc; 17 systems) orbiting white dwarfs with only 5–36 h of integration using MIRI’s low-resolution spectrometer.« less
  5. Abstract

    To fully leverage the statistical strength of the large number of planets found by projects such as the Kepler survey, the properties of planets and their host stars must be measured as accurately as possible. One key population for planet demographic studies is circumstellar planets in close binaries (ρ< 50 au), where the complex dynamical environment of the binary inhibits most planet formation, but some planets nonetheless survive. Accurately characterizing the stars and planets in these complex systems is a key factor in better understanding the formation and survival of planets in binaries. Toward that goal, we have developed a new Markov Chain Monte Carlo fitting algorithm to retrieve the properties of binary systems using unresolved spectra, unresolved photometry, and resolved contrasts. We have analyzed eight Kepler Objects of Interest in M-star binary systems using literature data, and have found that the temperatures of the primary stars (and presumed planet hosts) are revised upward by an average of 200 K. The planetary radii should be revised upward by an average of 20% if the primary star is the host, and 80% if the secondary star is the planet host. The average contrast between stellar components in the Kepler bandmore »is 0.75 mag, which is small enough that neither star in any of the binaries can be conclusively ruled out as a potential planet host. Our results emphasize the importance of accounting for multiplicity when measuring stellar parameters, especially in the context of exoplanet characterization.

    « less