skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Triggering of the Mw 7.2 Hawaii Earthquake of 4 May 2018 by a Dike Intrusion
Abstract

A Mw 7.2 earthquake struck the south flank of Kilauea, Hawaii, on 4 May 2018, following a period of volcanic unrest. To investigate its relationship with the stress changes induced by prior tectonic and magmatic activity, we model the coseismic slip distribution, preintrusion deformation, and dike intrusion using geodetic, seismic, and tsunami observations. The décollement beneath the south flank was creeping seaward by ~25 cm/year. Diking started on 20 April and led to fissure eruption on 3 May. The magmatic activity and creep resulted in an onshore U‐shaped zone of stress unloading, fringed by an off‐shore zone of stress buildup that apparently guided the 2018 rupture. It takes only 20 to 35 years at the preintrusion rate to accumulate a moment deficit equivalent to the moment that was released in 2018. This event falls short of balancing the moment budget since the 1975 Mw 7.7 earthquake.

 
more » « less
NSF-PAR ID:
10371243
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
5
ISSN:
0094-8276
Page Range / eLocation ID:
p. 2503-2510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate earthquake distribution and focal mechanisms associated with the 2018 Kīlauea volcano eruption in Hawaii. Our high‐precision earthquake relocations delineate an aseismic zone bounded by two subhorizontal bands of seismicity at 3.5 and 7 km depths beneath the eastern south flank, both of which are dominated by the shallow‐dipping reverse faulting during the 2018 activity. We interpret the deeper seismicity as related to the basal décollement that separates the volcanic edifice from the oceanic crust. The shallower seismicity is a feature exhibited in the recent activity and, which we propose, reveals a detachment that either represents the contact between Mauna Loa and Kīlauea volcanoes or coincides with the onland extension of the base of the Hilina slump. We suggest that large earthquakes, such as the 1975 Mw 7.7 and the 2018 Mw 6.9 mainshocks, are capable of triggering failures of both the basal décollement and the shallower surface.

     
    more » « less
  2. Abstract On 3 May 2018, Kīlauea Volcano, one of the most active volcanoes in the world, entered a new eruptive phase because of a dike intrusion in the East Rift zone. One day later, an Mw 6.9 earthquake, which was likely trigged by the dike intrusion, occurred in the submarine south flank of Kīlauea Volcano. In mid-July, an ocean-bottom seismometer (OBS) array consisting of 12 stations was deployed on the submarine south flank of Kīlauea Volcano to monitor the aftershocks and lava–water interaction near the ocean entry. Eleven OBSs were recovered in mid-September. Preliminary evaluation of the data reveals a large number of seismic and acoustic events, which provide a valuable dataset for understanding flank deformation and stability as well as lava–water interaction. Here, we introduce this dataset and document notable instrument malfunctions along with some initial seismic and acoustic observations. 
    more » « less
  3. The science of volcanology advances disproportionately during exceptionally large or well-observed eruptions. The 2018 eruption of Kīlauea Volcano (Hawai‘i) was its most impactful in centuries, involving an outpouring of more than one cubic kilometer of basalt, a magnitude 7 flank earthquake, and the volcano's largest summit collapse since at least the nineteenth century. Eruptive activity was documented in detail, yielding new insights into large caldera-rift eruptions; the geometry of a shallow magma storage-transport system and its interaction with rift zone tectonics; mechanisms of basaltic tephra-producing explosions; caldera collapse mechanics; and the dynamics of fissure eruptions and high-volume lava flows. Insights are broadly applicable to a range of volcanic systems and should reduce risk from future eruptions. Multidisciplinary collaboration will be required to fully leverage the diversity of monitoring data to address many of the most important outstanding questions. ▪ Unprecedented observations of a caldera collapse and coupled rift zone eruption yield new opportunities for advancing volcano science. ▪ Magma flow to a low-elevation rift zone vent triggered quasi-periodic step-like collapse of a summit caldera, which pressurized the magma system and sustained the eruption. ▪ Kīlauea's magmatic-tectonic system is tightly interconnected over tens of kilometers, with complex feedback mechanisms and interrelated hazards over widely varying time scales. ▪ The eruption revealed magma stored in diverse locations, volumes, and compositions, not only beneath the summit but also within the volcano's most active rift zone.

    Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

     
    more » « less
  4. null (Ed.)
    ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34  hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5  m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2  km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5  MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes. 
    more » « less
  5. Abstract

    Earthquake focal mechanisms, determined with P‐wave polarities and S/P amplitude ratios, are primary data for analyzing fault zone geometry, sense of slip, and the crustal stress field. Solving for the focal mechanisms of small earthquakes is often challenging because phase arrivals and first‐motion polarities are hard to be separated from noise. To overcome this challenge, we implement convolutional‐neural‐network algorithms (Ross, Meier, & Hauksson, 2018, Ross, Meier, Hauksson, & Heaton, 2018,https://doi.org/10.1029/2017jb015251,https://doi.org/10.1785/0120180080) to detect additional phases and polarities. Using both existing and these new data, we build a high‐quality focal mechanism catalog of 297,478 events that occurred from 1981 to 2021 in southern California with the HASH method of Hardebeck and Shearer (2002),https://doi.org/10.1785/0120010200, Hardebeck and Shearer (2003),https://doi.org/10.1785/0120020236. The new focal mechanism catalog is overall consistent with the standard catalog (Yang et al., 2012,https://doi.org/10.1785/0120110311) but includes 40% more focal mechanisms, and is more consistent with moment tensor solutions derived using waveform‐fitting methods. We apply the new catalog to identify changes in focal mechanism properties caused by the occurrences of large mainshocks such as the 2010Mw7.2 El Mayor‐Cucapah and 2019Mw7.1 Ridgecrest earthquakes. Such changes may be associated with co‐seismic stress drops, post‐seismic deformation processes, and static stress changes on a regional scale. The new high‐resolution catalog will contribute to improved understanding of the crustal stress field, earthquake triggering mechanisms, fault zone geometry, and sense of slip on the faults in southern California.

     
    more » « less