We demonstrate efficient filtering of coherent light from a broad spectral background. A Michelson interferometer is used to effectively filter out the coherent emission of mid-infrared lasers from the co-propagating incoherent emission of a broadband thermal source. We show coherent light suppression as high as 16.9 dB without any modification of the broadband incoherent background spectrum. In addition, we demonstrate the ability to measure the spatially dependent (incoherent) thermal emission from a patterned surface, using our filter to remove a coherent signal which would otherwise overload our detection system. The demonstrated filter is rapidly tunable and wavelength-flexible, and has potential for imaging and spectroscopy applications in the presence of an otherwise overpowering coherent signal.
Time-frequency (TF) filtering of analog signals has played a crucial role in the development of radio-frequency communications and is currently being recognized as an essential capability for communications, both classical and quantum, in the optical frequency domain. How best to design optical time-frequency (TF) filters to pass a targeted temporal mode (TM), and to reject background (noise) photons in the TF detection window? The solution for ‘coherent’ TF filtering is known—the quantum pulse gate—whereas the conventional, more common method is implemented by a sequence of incoherent spectral filtering and temporal gating operations. To compare these two methods, we derive a general formalism for two-stage incoherent time-frequency filtering, finding expressions for signal pulse transmission efficiency, and for the ability to discriminate TMs, which allows the blocking of unwanted background light. We derive the tradeoff between efficiency and TM discrimination ability, and find a remarkably concise relation between these two quantities and the time-bandwidth product of the combined filters. We apply the formalism to two examples—rectangular filters or Gaussian filters—both of which have known orthogonal-function decompositions. The formalism can be applied to any state of light occupying the input temporal mode, e.g., ‘classical’ coherent-state signals or pulsed single-photon states of light. In contrast to the radio-frequency domain, where coherent detection is standard and one can use coherent matched filtering to reject noise, in the optical domain direct detection is optimal in a number of scenarios where the signal flux is extremely small. Our analysis shows how the insertion loss and SNR change when one uses incoherent optical filters to reject background noise, followed by direct detection, e.g. photon counting. We point out implications in classical and quantum optical communications. As an example, we study quantum key distribution, wherein strong rejection of background noise is necessary to maintain a high quality of entanglement, while high signal transmission is needed to ensure a useful key generation rate.
more » « less- PAR ID:
- 10371244
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 22
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 32819
- Size(s):
- Article No. 32819
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Data recorded by distributed acoustic sensing (DAS) along an optical fibre sample the spatial and temporal properties of seismic wavefields at high spatial density. Often leading to massive amount of data when collected for seismic monitoring along many kilometre long cables. The spatially coherent signals from weak seismic arrivals within the data are often obscured by incoherent noise. We present a flexible and computationally efficient filtering technique, which makes use of the dense spatial and temporal sampling of the data and that can handle the large amount of data. The presented adaptive frequency–wavenumber filter suppresses the incoherent seismic noise while amplifying the coherent wavefield. We analyse the response of the filter in time and spectral domain, and we demonstrate its performance on a noisy data set that was recorded in a vertical borehole observatory showing active and passive seismic phase arrivals. Lastly, we present a performant open-source software implementation enabling real-time filtering of large DAS data sets.
-
Abstract The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
-
Abstract Manipulation of quantum optical pulses, such as single photons or entangled photon pairs, enables numerous applications, from quantum communications and networking to enhanced sensing. Common methods to shape laser pulses based upon filtering or amplification cannot be employed with quantum light pulses as these approaches introduce detrimental loss and noise to the system. Here, methods to control and measure quantum light pulses based upon deterministic application of targeted phases in time and frequency domains are reviewed, along with recent demonstrations of quantum applications.
-
Photonics provides a promising approach for image processing by spatial filtering, with the advantage of faster speeds and lower power consumption compared to electronic digital solutions. However, traditional optical spatial filters suffer from bulky form factors that limit their portability. Here we present a new approach based on pixel arrays of plasmonic directional image sensors, designed to selectively detect light incident along a small, geometrically tunable set of directions. The resulting imaging systems can function as optical spatial filters without any external filtering elements, leading to extreme size miniaturization. Furthermore, they offer the distinct capability to perform multiple filtering operations at the same time, through the use of sensor arrays partitioned into blocks of adjacent pixels with different angular responses. To establish the image processing capabilities of these devices, we present a rigorous theoretical model of their filter transfer function under both coherent and incoherent illumination. Next, we use the measured angle-resolved responsivity of prototype devices to demonstrate two examples of relevant functionalities: (1) the visualization of otherwise invisible phase objects and (2) spatial differentiation with incoherent light. These results are significant for a multitude of imaging applications ranging from microscopy in biomedicine to object recognition for computer vision.