skip to main content


Title: Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging

Brillouin microscopy is an emerging label-free imaging technique used to assess local viscoelastic properties. Quantum-enhanced stimulated Brillouin scattering is demonstrated using low power continuous-wave lasers at 795 nm. A signal-to-noise ratio enhancement of 3.4 dB is reported by using two-mode intensity-difference squeezed light generated with the four-wave mixing process in atomic rubidium vapor. The low optical power and the excitation wavelengths in the water transparency window have the potential to provide a powerful bio-imaging technique for probing mechanical properties of biological samples prone to phototoxicity and thermal effects. The performance enhancement affordable through the use of quantum light may pave the way for significantly improved sensitivity that cannot be achieved classically. The proposed method for utilizing squeezed light for enhanced stimulated Brillouin scattering can be easily adapted for both spectroscopic and imaging applications in biology.

 
more » « less
NSF-PAR ID:
10371260
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
9
Issue:
8
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 959
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thermoelastic properties of mantle candidate minerals are essential to our understanding of geophysical phenomena, geochemistry, and geodynamic evolutions of the silicate Earth. However, the lower-mantle mineralogy remains much debated due to the lack of single-crystal elastic moduli (Cij) and aggregate sound velocities of (Al,Fe)-bearing bridgmanite, the most abundant mineral of the planet, at the lower mantle pressure-temperature (P-T) conditions. Here we report single-crystal Cij of (Al,Fe)-bearing bridgmanite, Mg0.88Fe0.1Al0.14Si0.90O3 (Fe10-Al14-Bgm) with Fe3+/ΣFe = ~0.65, up to ~82 GPa using X-ray diffraction (XRD), Brillouin light scattering (BLS), and impulsive stimulated light scattering (ISLS) measurements in diamond-anvil cells (DACs). Two crystal platelets with orientations of (–0.50, 0.05, –0.86) and (0.65, –0.59, 0.48), that are sensitive to deriving all nine Cij, are used for compressional and shear wave velocity (νP and νS) measurements as a function of azimuthal angles over 200° at each experimental pressure. Our results show that all Cij of singe-crystal Fe10-Al14-Bgm increase monotonically with pressure with small uncertainties of 1–2% (±1σ), except C55 and C23, which have uncertainties of 3–4%. Using the third-order Eulerian finite-strain equations to model the elasticity data yields the aggregate adiabatic bulk and shear moduli and respective pressure derivatives at the reference pressure of 25 GPa: KS = 326 ± 4 GPa, µ = 211 ± 2 GPa, KS′ = 3.32 ± 0.04, and µ′ = 1.66 ± 0.02 GPa. The high-pressure aggregate νS and νP of Fe10-Al14-Bgm are 2.6–3.5% and 3.1–4.7% lower than those of MgSiO3 bridgmanite end-member, respectively. These data are used with literature reports on bridgmanite with different Fe and Al contents to quantitatively evaluate pressure and compositional effects on their elastic properties. Comparing with one-dimensional seismic profiles, our modeled velocity profiles of major lower-mantle mineral assemblages at relevant P-T suggest that the lower mantle could likely consist of about 89 vol% (Al,Fe)-bearing bridgmanite. After considering uncertainties, our best-fit model is still indistinguishable from pyrolitic or chondritic models. 
    more » « less
  2. Abstract

    The past decade has seen tremendous progress in the production and utilization of vortex and vector laser pulses. Although both are considered as structured light beams, the vortex lasers have helical phase fronts and phase singularities, while the vector lasers have spatially variable polarization states and polarization singularities. In contrast to the vortex pulses that carry orbital angular momentum (OAM), the vector laser pulses have a complex spin angular momentum (SAM) and OAM coupling. Despite many potential applications enabled by such pulses, the generation of high-power/-intensity vortex and vector beams remains challenging. Here, we demonstrate using theory and three-dimensional simulations that the strongly-coupled stimulated Brillouin scattering (SC-SBS) process in plasmas can be used as a promising amplification technique with up to 65% energy transfer efficiency from the pump beam to the seed beam for both vortex and vector pulses. We also show that SC-SBS is strongly polarization-dependent in plasmas, enabling an all-optical polarization control of the amplified seed beam. Additionally, the interaction of such structured lasers with plasmas leads to various angular momentum couplings and decouplings that produce intense new light structures with controllable OAM and SAM. This scheme paves the way for novel optical devices such as plasma-based amplifiers and light field manipulators.

     
    more » « less
  3. The Brillouin instability (BI) caused by stimulated Brillouin scattering (SBS) can limit the output power of high-energy laser amplifiers. Pseudo-random bitstream (PRBS) phase modulation is an effective modulation technique to suppress BI. In this paper, we study the impact of the PRBS order and modulation frequency on the BI threshold for different Brillouin linewidths. PRBS phase modulation with a higher order will break the power into a larger number of frequency tones with a lower maximum power in each tone, leading to a higher BI threshold and a smaller tone spacing. However, the BI threshold may saturate when the tone spacing in the power spectra approaches the Brillouin linewidth. For a given Brillouin linewidth, our results allow us to determine the order of PRBS beyond which there is no further improvement in the threshold. When a specific threshold power is desired, the minimum PRBS order required decreases as the Brillouin linewidth increases. When the PRBS order is too large, the BI threshold deteriorates, and this deterioration occurs at smaller PRBS orders as the Brillouin linewidth increases. We investigate the dependence of the optimal PRBS order on the averaging time and fiber length, and we did not find a significant dependence. We also derive a simple equation that relates the BI threshold for different PRBS orders. Hence, the increase in BI threshold using an arbitrary order PRBS phase modulation may be predicted using the BI threshold from a lower PRBS order, which is computationally less time-consuming to compute.

     
    more » « less
  4. Abstract

    Squeezed light has long been used to enhance the precision of a single optomechanical sensor. An emerging set of proposals seeks to use arrays of optomechanical sensors to detect weak distributed forces, for applications ranging from gravity-based subterranean imaging to dark matter searches; however, a detailed investigation into the quantum-enhancement of this approach remains outstanding. Here, we propose an array of entanglement-enhanced optomechanical sensors to improve the broadband sensitivity of distributed force sensing. By coherently operating the optomechanical sensor array and distributing squeezing to entangle the optical fields, the array of sensors has a scaling advantage over independent sensors (i.e.,$$\sqrt{M}\to M$$MM, whereMis the number of sensors) due to coherence as well as joint noise suppression due to multi-partite entanglement. As an illustration, we consider entanglement-enhancement of an optomechanical accelerometer array to search for dark matter, and elucidate the challenge of realizing a quantum advantage in this context.

     
    more » « less
  5. We report on an ultralow probe-power transient grating apparatus with probing based on a laser diode pulser, a digital delay generator, and a data acquisition card. The electronic triggering of the diode pulser permits stroboscopic measurement of arbitrarily slow laser-induced dynamics using pulses of probe light with average power∼<#comment/>5nW, significantly lower than what is currently used by continuous wave measurement. The proposed method also allows for flexibility in selection of the probe wavelength limited only by availability of low threshold current laser diodes. Examples of impulsive stimulated thermal scattering measurements are presented on liquid isopropanol, single crystal solidCrCl3, and a thin film of Cu vapor deposited on a Si substrate, demonstrating the flexibility of the technique.

     
    more » « less