skip to main content


Title: Similar forms have similar functions: dental microwear variability in Tasmanian devils
Abstract

Dental microwear texture analysis (DMTA) is commonly used to assess the dietary ecology of modern and fossil taxa. In carnivorans, teeth with different functions record dietary behavior differently. Here, we assess DMTA variability along the tooth row of an extant carnivorous marsupial—the Tasmanian devil, Sarcophilus harrisii—which has multiple carnassial-like molars that may function and record diet similarly. We compared the complexity (Asfc), anisotropy (epLsar), and textural fill volume (Tfv) of the lower second, third, and fourth molars of Tasmanian devils to test the hypothesis that teeth with similar forms yield similar functions. Although third molars do have significantly higher epLsar values than fourth molars, all other DMTA attributes are indistinguishable from one another. These data suggest that teeth with comparable morphologies in the same taxon have similar functions and largely record diet similarly. In addition, we compared fossil and modern specimens of S. harrisii from Tasmania to assess dietary behavior over time. These analyses indicate that foods with similar textures have been consumed since the late Quaternary.

 
more » « less
NSF-PAR ID:
10371264
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Mammalogy
Volume:
103
Issue:
4
ISSN:
0022-2372
Page Range / eLocation ID:
p. 891-899
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Components of diet known as fallback foods are argued to be critical in shaping primate dental anatomy. Such foods of low(er) nutritional quality are often non-preferred, mechanically challenging resources that species resort to during ecological crunch periods. An oft-cited example of the importance of dietary fallbacks in shaping primate anatomy is the grey-cheeked mangabeyLophocebus albigena. This species relies upon hard seeds only when softer, preferred resources are not available, a fact which has been linked to its thick dental enamel. Another mangabey species with thick enamel, the sooty mangabeyCercocebus atys, processes a mechanically challenging food year-round. That the two mangabey species are both thickly-enameled suggests that both fallback and routine consumption of hard foods are associated with the same anatomical feature, complicating interpretations of thick enamel in the fossil record. We anticipated that aspects of enamel other than its thickness might differ betweenCercocebus atysandLophocebus albigena.We hypothesized that to function adequately under a dietary regime of routine hard-object feeding, the molars ofCercocebus atyswould be more fracture and wear resistant than those ofLophocebus albigena.

    Methods

    Here we investigated critical fracture loads, nanomechanical properties of enamel, and enamel decussation inCercocebus atysandLophocebus albigena.Molars ofCercopithecus, a genus not associated with hard-object feeding, were included for comparison. Critical loads were estimated using measurements from 2D µCT slices of upper and lower molars. Nanomechanical properties (by nanoindentation) and decussation of enamel prisms (by SEM-imaging) in trigon basins of one upper second molar per taxon were compared.

    Results

    Protocone and protoconid critical fracture loads were significantly greater inCercocebus atysthanLophocebus albigenaand greater in both than inCercopithecus. Elastic modulus, hardness, and elasticity index in most regions of the crown were greater inCercocebus atysthan in the other two taxa, with the greatest difference in the outer enamel. All taxa had decussated enamel, but that ofCercocebus atysuniquely exhibited a bundle of transversely oriented prisms cervical to the radial enamel. Quantitative comparison of in-plane and out-of-plane prism angles suggests that decussation in trigon basin enamel is more complex inCercocebus atysthan it is in eitherLophocebus albigenaorCercopithecus cephus. These findings suggest thatCercocebus atysmolars are more fracture and wear resistant than those ofLophocebus albigenaandCercopithecus. Recognition of these differences betweenCercocebus atysandLophocebus albigenamolars sharpens our understanding of associations between hard-object feeding and dental anatomy under conditions of routine vs. fallback hard-object feeding and provides a basis for dietary inference in fossil primates, including hominins.

     
    more » « less
  2. Old World monkeys (Cercopithecoidea) are a highly successful primate radiation, with more than 130 living species and the broadest geographic range of any extant group except humans. Although cercopithecoids are highly variable in habitat use, social behavior, and diet, a signature dental feature unites all of its extant members: bilophodonty (bi: two, loph: crest, dont: tooth), or the presence of two cross-lophs on the molars. This feature offers an adaptable Bauplan that, with small changes to its individual components, permits its members to process vastly different kinds of food. Old World monkeys diverged from apes perhaps 30 million years ago (Ma) according to molecular estimates, and the molar lophs are sometimes incompletely developed in fossil species, suggesting a mosaic origin for this key adaptation. However, critical aspects of the group’s earliest evolution remain unknown because the cercopithecoid fossil record before ∼18 Ma consists of only two isolated teeth, one from Uganda and one from Tanzania. Here we describe a primitive Old World monkey from Nakwai, Kenya, dated at ∼22 Ma, that offers direct evidence for the initial key steps in the evolution of the cercopithecoid dentition. The simple dentition and absence of bilophodonty in the Nakwai monkey indicate that the initial radiation of Old World monkeys was first characterized by a reorganization of basic molar morphology, and a reliance on cusps rather than lophs suggests frugivorous diets and perhaps hard object feeding. Bilophodonty evolved later, likely in response to the inclusion of leaves in the diet.

     
    more » « less
  3. Abstract Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other and negative evolutionary correlation with measurements of the inter-ceratobranchial ligament (ICB ligament). Using diet data from published literature, we found extensive dietary convergence within Leuciscidae. The most common transitions we found were between herbivorous and invertivorous taxa and between insectivore types (aquatic vs. terrestrial). We document a trade-off in which herbivorous leuciscids have large teeth, short ICB ligaments, and large muscle attachment areas, whereas insectivorous leuciscids showed the opposite pattern. Inverse patterns of morphological integration between the ICB ligament the rest of the pharyngeal jaw correspond this dietary trade-off, which indicates that coordinated evolution of morphological traits contributes to functional diversity in this clade. However, these patterns only emerge in the context of phylogeny, meaning that the pharyngeal jaws of North American leuciscids converge by similar means (structural changes in response to dietary demands), but not necessarily to similar ends (absolute phenotype). 
    more » « less
  4. INTRODUCTION Inherent in traditional views of ape origins is the idea that, like living apes, early large-bodied apes lived in tropical forests. In response to constraints related to locomoting in forest canopies, it has been proposed that early apes evolved their quintessential upright torsos and acrobatic climbing and suspensory abilities, enhancing their locomotor versatility, to distribute their weight among small supports and thus reach ripe fruit in the terminal branches. This feeding and locomotor transition from a quadruped with a horizontal torso is thought to have occurred in the Middle Miocene due to an increasingly seasonal climate and feeding competition from evolving monkeys. Although ecological and behavioral comparisons among living apes and monkeys provide evidence for versions of terminal branch forest frugivory hypotheses, corroboration from the early ape fossil record has been lacking, as have detailed reconstructions of the habitats where the first apes evolved. RATIONALE The Early Miocene fossil site of Moroto II in Uganda provides a unique opportunity to test the predictions of terminal branch forest frugivory hypotheses. Moroto II documents the oldest [21 million years ago (Ma)] well-established paleontological record of ape teeth and postcranial bones from a single locality and preserves paleoecological proxies to reconstruct the environment. The following lines of evidence from Moroto II were analyzed: (i) the functional anatomy of femora and a vertebra attributed to the ape Morotopithecus ; (ii) dental traits, including molar shape and isotopic profiles of Morotopithecus enamel; (iii) isotopic dietary paleoecology of associated fossil mammals; (iv) biogeochemical signals from paleosols (ancient soils) that reflect local relative proportions of C 3 (trees and shrubs) and C 4 (tropical grasses and sedges that can endure water stress) vegetation as well as rainfall; and (v) assemblages of phytoliths, microscopic plant-derived silica bodies that reflect past plant communities. RESULTS A short, strong femur biomechanically favorable to vertical climbing and a vertebra indicating a dorsostable lower back confirm that ape fossils from Moroto II shared locomotor traits with living apes. Both Morotopithecus and a smaller ape from the site have elongated molars with well-developed crests for shearing leaves. Carbon isotopic signatures of the enamel of these apes and of other fossil mammals indicate that some mammals consistently fed on water-stressed C 3  plants, and possibly also C 4  vegetation, in a woodland setting. Carbon isotope values of pedogenic carbonates, paleosol organic matter, and plant waxes all point to substantial C 4 grass biomass on the landscape. Analysis of paleosols also indicates subhumid, strongly seasonal rainfall, and phytolith assemblages include forms from both arid-adapted C 4 grasses and forest-indicator plants. CONCLUSION The ancient co-occurrence of dental specializations for leaf eating, rather than ripe fruit consumption, along with ape-like locomotor abilities counters the predictions of the terminal branch forest frugivory hypotheses. The combined paleoecological evidence situates Morotopithecus in a woodland with a broken canopy and substantial grass understory including C 4 species. These findings call for a new paradigm for the evolutionary origins of early apes. We propose that seasonal, wooded environments may have exerted previously unrecognized selective pressures in the evolution of arboreal apes. For example, some apes may have needed to access leaves in the higher canopy in times of low fruit availability and to be adept at ascending and descending from trees that lacked a continuous canopy. Hominoid habitat comparisons. Shown are reconstructions of a traditionally conceived hominoid habitat ( A ) and the 21 Ma Moroto II, Uganda, habitat ( B ). 
    more » « less
  5. Diet provides critical information about the ecology and environment of herbivores. Hence, understanding the dietary strategies of fossil herbivores and the associated temporal changes is one aspect of inferring paleoenvironmental conditions. Here, we present carbon isotope data from more than 1,050 fossil teeth that record the dietary patterns of nine herbivore families in the late Pliocene and early Pleistocene (3.6 to 1.05 Ma) from the Shungura Formation, a hominin-bearing site in southwestern Ethiopia. An increasing trend toward C4herbivory has been observed with attendant reductions in the proportions of browsers and mixed feeders through time. A high proportion of mixed feeders has been observed prior to 2.9 Ma followed by a decrease in the proportion of mixed feeders and an increase in grazers between 2.7 and 1.9 Ma, and a further increase in the proportion of grazers after 1.9 Ma. The collective herbivore fauna shows two major change points in carbon isotope values at ∼2.7 and ∼2.0 Ma. While hominin fossils from the sequence older than 2.7 Ma are attributed toAustralopithecus, the shift at ∼2.7 Ma indicating the expansion of C4grasses on the landscape was concurrent with the first appearance ofParanthropus. The link between the increased C4herbivory and more open landscapes suggests thatAustralopithecuslived in more wooded landscapes compared to later hominins such asParanthropusandHomo, and has implications for key morphological and behavioral adaptations in our lineage.

     
    more » « less