Abstract The Ovi1032, 1038 Å line is a key probe of cooling gas in the circumgalactic medium (CGM) of galaxies but has been observed to date primarily in absorption along single sight lines. We present deep Hubble Space Telescope (HST) Solar Blind Channel of the Advanced Camera for Surveys observations of the compact, massive starburst Makani. Makani hosts a 100 kpc, [Oii]-emitting galactic wind driven by two episodes of star formation over 400 Myr. We detect Oviand Lyαemission across the [Oii] nebula with similar morphology and extent, out tor≈ 50 kpc. Using differential narrowband imaging, we separate Lyαand Oviand show that the Oviemission is comparable in brightness to [Oii], withLO VI= 4 × 1042erg s−1. The similar hourglass morphology and size of [Oii] and Oviimplicate radiative cooling atT= 105.5K in a hot–cold interface. This may occur as theT> 107K CGM—or the hot fluid driving the wind—exchanges mass with theT≈ 104K clouds entrained in (or formed by) the wind. The optical/UV line ratios may be consistent with shock ionization, although uncertain attenuation and Lyαradiative transfer complicate the interpretation. The detection of Oviin Makani lies at the bleeding edge of the UV imaging capabilities of HST and provides a benchmark for future emission-line imaging of the CGM with a wide-area UV telescope.
more »
« less
Absorption-based circumgalactic medium line emission estimates
ABSTRACT Motivated by integral field units (IFUs) on large ground telescopes and proposals for ultraviolet-sensitive space telescopes to probe circumgalactic medium (CGM) emission, we survey the most promising emission lines and how such observations can inform our understanding of the CGM and its relation to galaxy formation. We tie our emission estimates to both HST/COS absorption measurements of ions around z ≈ 0.2 Milky Way mass haloes and models for the density and temperature of gas. We also provide formulas that simplify extending our estimates to other samples and physical scenarios. We find that O iii 5007 Å and N ii 6583 Å, which at fixed ionic column density are primarily sensitive to the thermal pressure of the gas they inhabit, may be detectable with KCWI and especially IFUs on 30 m telescopes out to half a virial radius. O v 630 Å and O vi 1032,1038 Å are perhaps the most promising ultraviolet lines, with models predicting intensities >100 γ cm−2 s−1 sr−1 in the inner 100 kpc of Milky Way-like systems. A detection of O vi would confirm the collisionally ionized picture and constrain the density profile of the CGM. Other ultraviolet metal lines constrain the amount of gas that is actively cooling and mixing. We find that C iii 978 Å and C iv 1548 Å may be detectable if an appreciable fraction of the observed O vi column is associated with mixing or cooling gas. H α emission within $$100\,$$ kpc of Milky Way-like galaxies is within reach of current IFUs even for the minimum signal from ionizing background fluorescence, while hydrogen n > 2 Ly-series lines are too weak to be detectable.
more »
« less
- Award ID(s):
- 2007012
- PAR ID:
- 10371295
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 516
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 3049-3067
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use hydrodynamical simulations of two Milky Way–mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sight lines of the simulated galaxies’ CGM and use Voigt profile-fitting methods to extract ion column densities, Doppler-bparameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower Oviabsorption features and broader Siiiiabsorption features, a quality that is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM.more » « less
-
ABSTRACT Recent observations have revealed remarkable insights into the gas reservoir in the circumgalactic medium (CGM) of galaxy haloes. In this paper, we characterize the gas in the vicinity of Milky Way and Andromeda analogues in the hestia (High resolution Environmental Simulations of The Immediate Area) suite of constrained Local Group (LG) simulations. The hestia suite comprise of a set of three high-resolution arepo-based simulations of the LG, run using the Auriga galaxy formation model. For this paper, we focus only on the z = 0 simulation data sets and generate mock skymaps along with a power spectrum analysis to show that the distributions of ions tracing low-temperature gas (H i and Si iii) are more clumpy in comparison to warmer gas tracers (O vi, O vii, and O viii). We compare to the spectroscopic CGM observations of M31 and low-redshift galaxies. hestia underproduces the column densities of the M31 observations, but the simulations are consistent with the observations of low-redshift galaxies. A possible explanation for these findings is that the spectroscopic observations of M31 are contaminated by gas residing in the CGM of the Milky Way.more » « less
-
ABSTRACT In several models of galaxy formation feedback occurs in cycles or mainly at high redshift. At times and in regions where feedback heating is ineffective, hot gas in the galaxy halo is expected to form a cooling flow, where the gas advects inward on a cooling timescale. Cooling flow solutions can thus be used as a benchmark for observations and simulations to constrain the timing and extent of feedback heating. Using analytic calculations and idealized 3D hydrodynamic simulations, we show that for a given halo mass and cooling function, steady-state cooling flows form a single-parameter family of solutions, while initially hydrostatic gaseous haloes converge on one of these solutions within a cooling time. The solution is thus fully determined once either the mass inflow rate $${\dot{M}}$$ or the total halo gas mass are known. In the Milky Way halo, a cooling flow with $${\dot{M}}$$ equal to the star formation rate predicts a ratio of the cooling time to the free-fall time of ∼10, similar to some feedback-regulated models. This solution also correctly predicts observed $$\rm{O\,{\small VII}}$$ and $$\rm{O\,{\small VIII}}$$ absorption columns, and the gas density profile implied by $$\rm{O\,{\small VII}}$$ and $$\rm{O\,{\small VIII}}$$ emission. These results suggest ongoing heating by feedback may be negligible in the inner Milky-Way halo. Extending similar solutions out to the cooling radius however underpredicts observed $$\rm{O\,{\small VI}}$$ columns around the Milky-Way and around other low-redshift star-forming galaxies. This can be reconciled with the successes of the cooling flow model with either a mechanism which preferentially heats the $$\rm{O\,{\small VI}}$$-bearing outer halo, or alternatively if $$\rm{O\,{\small VI}}$$ traces cool photoionized gas beyond the accretion shock. We also demonstrate that the entropy profiles of some of the most relaxed clusters are reasonably well described by a cooling flow solution.more » « less
-
Abstract The shallow potential wells of star-forming dwarf galaxies make their surrounding circumgalactic and intergalactic medium (CGM/IGM) sensitive laboratories for studying the inflows and outflows thought to regulate galaxy evolution. We present new absorption-line measurements in quasar sight lines, probing within projected distances of <300 kpc from 91 star-forming field dwarf galaxies with a median stellar mass of at 0.077 <z< 0.73, from the Cosmic Ultraviolet Baryon Survey (CUBS). In this redshift range, the CUBS quasar spectra cover a suite of transitions including Hi, low, and intermediate metal ions (e.g., Cii, Siii, Ciii, and Siiii), and highly ionized Ovi. This CUBS-Dwarfs survey enables constraints with samples nine times larger than past dwarf CGM/IGM studies with similar ionic coverage. We find that low and intermediate ionization metal absorption is rare around dwarf galaxies, consistent with previous surveys of local dwarfs. In contrast, highly ionized Oviis commonly observed in sight lines that pass within the virial radius of a dwarf, and Ovidetection rates are nonnegligible at projected distances of 1−2× the virial radius. Based on these measurements, we estimate that the Ovi-bearing phase of the CGM/IGM accounts for a dominant share of the metal budget of dwarf galaxies. The absorption kinematics suggest that a relatively modest fraction of the Ovi-bearing gas is formally unbound. Together, these results imply that low-mass systems atz≲ 1 effectively retain a substantial fraction of their metals within the nearby CGM and IGM.more » « less
An official website of the United States government
