skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Food quality, security, and thermal refuge influence the use of microsites and patches by pygmy rabbits ( Brachylagus idahoensis ) across landscapes and seasons
Abstract How intensely animals use habitat features depends on their functional properties (i.e., how the feature influences fitness) and the spatial and temporal scale considered. For herbivores, habitat use is expected to reflect the competing risks of starvation, predation, and thermal stress, but the relative influence of each functional property is expected to vary in space and time. We examined how a dietary and habitat specialist, the pygmy rabbit (Brachylagus idahoensis), used these functional properties of its sagebrush habitat—food quality, security, and thermal refuge—at two hierarchical spatial scales (microsite and patch) across two seasons (winter and summer). At the microsite and patch scales, we determined which plant functional traits predicted the number of bites (i.e., foraging) by pygmy rabbits and the number of their fecal pellets (i.e., general habitat use). Pygmy rabbits used microsites and patches more intensely that had higher crude protein and aerial concealment cover and were closer to burrows. Food quality was more influential when rabbits used microsites within patches. Security was more influential in winter than summer, and more at Cedar Gulch than Camas. However, the influence of functional properties depended on phytochemical and structural properties of sagebrush and was not spatiotemporally consistent. These results show function‐dependent habitat use that varied according to specific activities by a central‐place browsing herbivore. Making spatially explicit predictions of the relative value of habitat features that influence different types of habitat use (i.e., foraging, hiding, and thermoregulating) will improve how we predict patterns of habitat use by herbivores and how we monitor and manage functional traits within habitats for wildlife.  more » « less
Award ID(s):
1826801 1757324
PAR ID:
10371299
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
5
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carraway, Leslie (Ed.)
    Abstract Sagebrush-steppe ecosystems are one of the most imperiled ecosystems in North America and many of the species that rely on these habitats are of great conservation concern. Pygmy rabbits (Brachylagus idahoensis) are one of these species. They rely on sagebrush year-round for food and cover, and are understudied across their range in the intermountain west due in part to their recalcitrance to standard capture techniques. Identifying an efficient and minimally biased trapping method therefore is a critical first step in learning more about this species. We assessed how trap orientation and weather characteristics influenced trap success for Tomahawk traps placed in and around pygmy rabbit burrows by carrying out trapping surveys at 16 occupied pygmy rabbit sites across the Great Basin from 2016 to 2018. We found that pygmy rabbits had a greater probability of being captured in traps with the open end facing away from burrow entrances. Pygmy rabbits also were more likely to be captured on clear days (0–5% cloud cover) and during periods of cooler temperatures during summer months (June–August). We found no evidence that sex or age ratios differed, or that individuals differed meaningfully, in their preference for certain trap orientations. To increase trap success for pygmy rabbits, we suggest maximizing trapping effort during summer months, at dawn, and maximizing the proportion of Tomahawk traps facing away from burrow entrances. We anticipate that our monitoring protocol will enable more effective research into the ecology and conservation of this cryptic and potentially imperiled species. 
    more » « less
  2. Abstract Habitat loss is often considered the greatest near‐term threat to biodiversity, while the impact of habitat fragmentation remains intensely debated. A key issue of this debate centers on the problem of scale–landscape or patch–at which to assess the consequences of fragmentation. Yet patterns are often confounded across scales, and experimental designs that could solve this scaling problem remain scarce. We conducted two field experiments in 30 experimental landscapes in which we manipulated habitat loss, fragmentation, and patch size for a community of four insect herbivores that specialize on the cactusOpuntia. In the first experiment, we destroyed 2088Opuntiapatches in either aggregated or random patterns and compared the relative effects of landscape‐scale loss and fragmentation to those of local patch size on species occurrence. This experiment focused on manipulating the relative separation of remaining patches, where we hypothesized that aggregated loss would disrupt dispersal more than random loss, leading to lower occurrence. In the second experiment, we destroyed 759Opuntiapatches to generate landscapes that varied in patch number and size for a given amount of habitat loss and assessed species occurrence. This experiment focused on manipulating the subdivision of remaining habitat, where we hypothesized that an increase in the number of patches for a given amount of loss would lead to negative effects on occurrence. For both, we expected that occurrence would increase with patch size. We find strong evidence for landscape‐scale effects of habitat fragmentation, with aggregated loss and a larger number of patches for a given amount of habitat loss leading to a lower frequency of patches occupied in landscapes. In both experiments, occurrence increased with patch size, yet interactions of patch size and landscape‐scale loss and fragmentation drove species occurrence in patches. Importantly, the direction of effects were consistent across scales and effects of patch size were sufficient to predict the effects of habitat loss and fragmentation across entire landscapes. Our experimental results suggest that changes at both the patch and landscape scales can impact populations, but that a long‐standing pattern—the patch‐size effect—captures much of the key variation shaping patterns of species occurrence. 
    more » « less
  3. Abstract Understanding how megaherbivores incorporate habitat features into their foraging behavior is key toward understanding how herbivores shape the surrounding landscape. While the role of habitat structure has been studied within the context of predator–prey dynamics and grazing behavior in terrestrial systems, there is a limited understanding of how structure influences megaherbivore grazing in marine ecosystems. To investigate the response of megaherbivores (green turtles) to habitat features, we experimentally introduced structure at two spatial scales in a shallow seagrass meadow in The Bahamas. Turtle density increased 50‐fold (to 311 turtles ha−1) in response to the structures, and turtles were mainly grazing and resting (low vigilance behavior). This resulted in a grazing patch exceeding the size of the experimental setup (242 m2), with reduced seagrass shoot density and aboveground biomass. After structure removal, turtle density decreased and vigilance increased (more browsing and shorter surfacing times), while seagrass within the patch partly recovered. Even at a small scale (9 m2), artificial structures altered turtle grazing behavior, resulting in grazing patches in 60% of the plots. Our results demonstrate that marine megaherbivores select habitat features as foraging sites, likely to be a predator refuge, resulting in heterogeneity in seagrass bed structure at the landscape scale. 
    more » « less
  4. null (Ed.)
    Abstract Species that use the same resources present a paradox for understanding their coexistence. This is especially true for cryptic species because they are phenotypically similar. We examined how competition affects food-resource use in three cryptic species of Hyalella Smith, 1874, a freshwater-amphipod genus. We hypothesized that competitively inferior species would use high-quality algae patches when alone and competitively superior species would displace inferior species to low-quality patches. We compared use of foraging patches varying in algal content (i.e., quality) when species were alone or with another species. Our results showed that the competitively inferior species spent more time on the low-quality patch in the presence of the competitively superior species, but the behavior of the competitively superior species was independent of heterospecifics. This study provides insight into the role of interspecific competition in shaping resource use and patterns of coexistence in nature. 
    more » « less
  5. Prevailing theories about animal foraging behaviours and the food webs they occupy offer divergent predictions about whether seasonally limited food availability promotes dietary diversification or specialization. Emphasis on how animals compete for food predominates in work on the foraging ecology of large mammalian herbivores, whereas emphasis on how the diversity of available foods generally constrains dietary opportunity predominates work on entire food webs. Reconciling predictions about what promotes dietary diversification is challenging because species’ different body sizes and mobilities modulate how they seek and compete for resources—the mechanistic bases of common predictions may not pertain to all species equally. We evaluated predictions about five large-herbivore species that differ in body size and mobility in Yellowstone National Park using GPS tracking and dietary DNA. The data illuminated remarkably strong and significant correlations between body size and five key indicators of diet seasonality (R2= 0.71–0.80). Compared to smaller species, bison and elk showed muted diet seasonality and maintained access to more unique foods when winter conditions constrained food availability. Evidence from GPS collars revealed size-based differences in species’ seasonal movements and habitat-use patterns, suggesting that better accounting for the allometry of foraging behaviours may help reconcile disparate ideas about the ecological drivers of seasonal diet switching. 
    more » « less