skip to main content


Title: The 2016 M7 Kumamoto, Japan, Earthquake Slip Field Derived From a Joint Inversion of Differential Lidar Topography, Optical Correlation, and InSAR Surface Displacements
Abstract

Observations of surface deformation within 1–2 km of a surface rupture contain invaluable information about the coseismic behavior of the shallow crust. We investigate the oblique strike‐slip 2016 M7 Kumamoto, Japan, earthquake, which ruptured the Futagawa‐Hinagu Fault. We solve for variable fault slip in an inversion of differential lidar topography, satellite optical image correlation, and Interferometric Synthetic Aperture Radar (InSAR)‐derived surface displacements. The near‐fault differential lidar pose several challenges. The model fault geometry must follow the surface trace at the sub‐kilometer scale. Integration of displacement datasets with different sensitivities to the 3D deformation field and varying spatial distribution permits additional complexity in the inferred slip but introduces ambiguity that requires careful selection of the regularization. We infer a Mwearthquake. The maximum slip of 6.9 m occurred at 4.5‐km depth, suggesting an on‐fault slip deficit in the upper several kilometers of the crust that likely reflects distributed and inelastic deformation within the shallow fault zone.

 
more » « less
NSF-PAR ID:
10371372
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
12
ISSN:
0094-8276
Page Range / eLocation ID:
p. 6341-6351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Imaging tectonic creep along active faults is critical for measuring strain accumulation and ultimately understanding the physical processes that guide creep and the potential for seismicity. We image tectonic deformation along the central creeping section of the San Andreas Fault at the Dry Lake Valley paleoseismic site (36.468°N, 121.055°W) using three data sets with varying spatial and temporal scales: (1) an Interferometric Synthetic Aperture Radar (InSAR) velocity field with an ~100‐km footprint produced from Sentinel‐1 satellite imagery, (2) light detection and ranging (lidar) and structure‐from‐motion 3‐D topographic differencing that resolves a decade of deformation over a 1‐km aperture, and (3) surface fractures that formed over the 3‐ to 4‐m wide fault zone during a drought from late 2012 to 2014. The InSAR velocity map shows that shallow deformation is localized to the San Andreas Fault. We demonstrate a novel approach for differencing airborne lidar and structure‐from‐motion topography that facilitates resolving deformation along and adjacent to the San Andreas Fault. The 40‐m resolution topographic differencing resolves a 2.5 ± 0.2 cm/yr slip rate localized to the fault. The opening‐mode fractures accommodate cm/yr of fault slip. A 90% ± 30% of the 1‐km aperture deformation is accommodated over the several meter‐wide surface trace of the San Andreas Fault. The extension direction inferred from the opening‐mode fractures and topographic differencing is 40°–48° from the local trend of the San Andreas Fault. The localization of deformation likely reflects the well‐oriented and mature fault.

     
    more » « less
  2. Abstract

    Aseismic deformation has been suggested as a mechanism to release the accumulated strain in rifts. However, the fraction and the spatial distribution of the aseismic strain are poorly constrained during amagmatic episodes. Using Sentinel‐1 interferograms, we identify the surface deformation associated with the 2014Mw5.2 Karonga earthquake, Malawi, and perform inversions for fault geometry. We also analyze aftershocks and find a variety of source mechanisms within short timescales. A significant discrepancy in the earthquake depth determined by geodesy (3–6 km) and seismology (11–13 km) exists, although both methods indicateMw5.2. We propose that the surface deformation is caused by aseismic slip from a shallow depth. This vertical partitioning from seismic to aseismic strain is accommodated by intersecting dilatational faults in the shallow upper crust and sedimentary basin, highlighting the importance of considering aseismic deformation in active tectonics and time‐averaged strain patterns, even in rifts with little volcanism.

     
    more » « less
  3. Abstract

    The 2021MW6.0 Yangbi, Yunnan strike‐slip earthquake occurred on an unmapped crustal fault near the Weixi‐Qiaoho‐Weishan Fault along the southeast margin of the Tibetan Plateau. Using near‐source broadband seismic data from ChinArray, we investigate the spatial and temporal rupture evolution of the mainshock using apparent moment‐rate functions (AMRFs) determined by the empirical Green's function (EGF) method. Assuming a 1D line source on the fault plane, the rupture propagated unilaterally southeastward (∼144°) over a rupture length of ∼8.0 km with an estimated rupture speed of 2.1 km/s to 2.4 km/s. A 2D coseismic slip distribution for an assumed maximum rupture propagation speed of 2.2 km/s indicates that the rupture propagated to the southeast ∼8.0 km along strike and ∼5.0 km downdip with a peak slip of ∼2.1 m before stopping near the largest foreshock, where three bifurcating subfaults intersect. Using the AMRFs, the radiated energy of the mainshock is estimated as ∼. The relatively low moment scaled radiated energyof 1.5 × 10−5and intense foreshock and aftershock activity might indicate reactivation of an immature fault. The earthquake sequence is mainly distributed along a northwest‐southeast trend, and aftershocks and foreshocks are distributed near the periphery of the mainshock large‐slip area, suggesting that the stress in the mainshock slip zone is significantly reduced to below the level for more than a few overlapping aftershock to occur.

     
    more » « less
  4. Abstract

    The 2021 Maduo earthquake ruptured a 150 km‐long left‐lateral fault in the northeast Tibet. We used Synthetic Aperture Radar data collected by the Sentinel‐1A/B satellites within days of the earthquake to derive a finite fault model and investigate the details of slip distribution with depth. We generated coseismic interferograms and pixel offsets from different look directions corresponding to the ascending and descending satellite orbits. At the eastern end the rupture bifurcated into two sub‐parallel strands, with larger slip on the northern strand. Inversions of coseismic displacements show maximum slip to the east of the epicenter. The averaged coseismic slip has a peak at depth of 3–4 km, similar to slip distributions of a number of shallow strike‐slip earthquakes. Postseismic observations over several weeks following the Maduo earthquake reveal surface slip with amplitude up to 0.1 m that at least partially eliminated the coseismic slip deficit in the uppermost crust.

     
    more » « less
  5. Abstract

    Subduction forearcs are subject to seismic hazard from upper plate faults that are often invisible to instrumental monitoring networks. Identifying active faults in forearcs therefore requires integration of geomorphic, geologic, and paleoseismic data. We demonstrate the utility of a combined approach in a densely populated region of Vancouver Island, Canada, by combining remote sensing, historical imagery, field investigations, and shallow geophysical surveys to identify a previously unrecognized active fault, theXEOLXELEK‐Elk Lake fault, in the northern Cascadia forearc, ∼10 km north of the city of Victoria. Lidar‐derived digital terrain models and historical air photos show a ∼2.5‐m‐high scarp along the surface of a Quaternary drumlinoid ridge. Paleoseismic trenching and electrical resistivity tomography surveys across the scarp reveal a single reverse‐slip earthquake produced a fault‐propagation fold above a blind southwest‐dipping fault. Five geologically plausible chronological models of radiocarbon dated charcoal constrain the likely earthquake age to between 4.7 and 2.3 ka. Fault‐propagation fold modeling indicates ∼3.2 m of reverse slip on a blind, 50° southwest‐dipping fault can reproduce the observed deformation. Fault scaling relations suggest aM6.1–7.6 earthquake with a 13 to 73‐km‐long surface rupture and 2.3–3.2 m of dip slip may be responsible for the deformation observed in the paleoseismic trench. An earthquake near this magnitude in Greater Victoria could result in major damage, and our results highlight the importance of augmenting instrumental monitoring networks with remote sensing and field studies to identify and characterize active faults in similarily challenging environments.

     
    more » « less