skip to main content


Title: An orbital perspective on the starvation, stripping, and quenching of satellite galaxies in the eagle simulations
ABSTRACT

Using the eagle (Evolution and Assembly of GaLaxies and their Environments) suite of simulations, we demonstrate that both cold gas stripping and starvation of gas inflow play an important role in quenching satellite galaxies across a range of stellar and halo masses, M⋆ and M200. Quantifying the balance between gas inflows, outflows, and star formation rates, we show that even at z = 2, only $\approx 30{{\ \rm per\ cent}}$ of satellite galaxies are able to maintain equilibrium or grow their reservoir of cool gas – compared to $\approx 50{{\ \rm per\ cent}}$ of central galaxies at this redshift. We find that the number of orbits completed by a satellite on first-infall to a group environment is a very good predictor of its quenching, even more so than the time since infall. On average, we show that intermediate-mass satellites with M⋆ between will be quenched at $10^{9}\, {\rm M}_{\odot }\, {\rm and}\, 10^{10}\, {\rm M}_{\odot }$ first pericenter in massive group environments, $M_{200}\gt 10^{13.5}\, {\rm M}_{\odot }$; and will be quenched at second pericenter in less massive group environments, $M_{200}\lt 10^{13.5}\, {\rm M}_{\odot }$. On average, more massive satellites ($M_{\star }\gt 10^{10}\, {\rm M}_{\odot }$) experience longer depletion time-scales, being quenched between first and second pericenters in massive groups, while in smaller group environments, just $\approx 30{{\ \rm per\ cent}}$ will be quenched even after two orbits. Our results suggest that while starvation alone may be enough to slowly quench satellite galaxies, direct gas stripping, particularly at pericenters, is required to produce the short quenching time-scales exhibited in the simulation.

 
more » « less
NSF-PAR ID:
10371416
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2891-2912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($M_{*}\lesssim 10^7\, \rm {M}_{\odot }$) are mostly quiescent and higher mass satellites ($M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$) are mostly star forming, with intermediate-mass satellites ($M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$, they do not generally reproduce SAGA’s turnover at lower masses.

     
    more » « less
  2. ABSTRACT

    While dwarf galaxies observed in the field are overwhelmingly star forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M$_* \sim 10^8 \, \text{M}_\odot$), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are ${\rm H}\, \rm{\small I}$ deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on time-scales consistent with their likely infall times into NGC 3109’s halo. It is currently believed that starvation is caused by ‘weak’ ram pressure that prevents low-density, weakly bound gas from being accreted on to the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely bound gaseous outflows from the dwarf satellites driven by their own star formation.

     
    more » « less
  3. ABSTRACT

    Satellite galaxies in the cluster environment are more likely to be quenched than galaxies in the general field. Recently, it has been reported that satellite galaxy quenching depends on the orientation relative to their central galaxies: satellites along the major axis of centrals are more likely to be quenched than those along the minor axis. In this paper, we report a detection of such anisotropic quenching up to z ∼ 1 based on a large optically selected cluster catalogue constructed from the Hyper Suprime-Cam Subaru Strategic Program. We calculate the quiescent satellite galaxy fraction as a function of orientation angle measured from the major axis of central galaxies and find that the quiescent fractions at 0.25 < z < 1 are reasonably fitted by sinusoidal functions with amplitudes of a few per cent. Anisotropy is clearer in inner regions (<r200m) of clusters and not significant in cluster outskirts (>r200m). We also confirm that the observed anisotropy cannot be explained by differences in local galaxy density or stellar mass distribution along the two axes. Quiescent fraction excesses between the two axes suggest that the quenching efficiency contributing to the anisotropy is almost independent of stellar mass, at least down to our stellar mass limit of $M_{*}=1\times 10^{10}\, {\rm M}_{\odot }$. Finally, we argue that the physical origins of the observed anisotropy should have shorter quenching time-scales than $\sim 1\, \mathrm{Gyr}$, like ram-pressure stripping, because, for anisotropic quenching to be observed, satellites must be quenched before their initial orientation angles are significantly changed.

     
    more » « less
  4. ABSTRACT

    The orbits of satellite galaxies encode rich information about their histories. We investigate the orbital dynamics and histories of satellite galaxies around Milky Way (MW)-mass host galaxies using the FIRE-2 cosmological simulations, which, as previous works have shown, produce satellite mass functions and spatial distributions that broadly agree with observations. We first examine trends in orbital dynamics at z = 0, including total velocity, specific angular momentum, and specific total energy: the time of infall into the MW-mass halo primarily determines these orbital properties. We then examine orbital histories, focusing on the lookback time of first infall into a host halo and pericentre distances, times, and counts. Roughly 37 per cent of galaxies with $M_{\rm star}\lesssim 10^7\, {\rm M}_{\odot }$ were ‘pre-processed’ as a satellite in a lower-mass group, typically $\approx 2.7\, {\rm Gyr}$ before falling into the MW-mass halo. Half of all satellites at z = 0 experienced multiple pericentres about their MW-mass host. Remarkably, for most (67 per cent) of these satellites, their most recent pericentre was not their minimum pericentre: the minimum typically was ∼40 per cent smaller and occurred $\sim 6\, {\rm Gyr}$ earlier. These satellites with growing pericentres appear to have multiple origins: for about half, their specific angular momentum gradually increased over time, while for the other half, most rapidly increased near their first apocentre, suggesting that a combination of a time-dependent MW-mass halo potential and dynamical perturbations in the outer halo caused these satellites’ pericentres to grow. Our results highlight the limitations of idealized, static orbit modelling, especially for pericentre histories.

     
    more » « less
  5. ABSTRACT

    We model satellite quenching at z ∼ 1 by combining 14 massive (1013.8 < Mhalo/M⊙ < 1015) clusters at 0.8 < z < 1.3 from the GOGREEN and GCLASS surveys with accretion histories of 56 redshift-matched analogues from the IllustrisTNG simulation. Our fiducial model, which is parametrized by the satellite quenching time-scale (τquench), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning τquench to reproduce the observed satellite quenched fraction versus stellar mass trend. This model successfully reproduces the observed satellite quenched fraction as a function of stellar mass (by construction), projected cluster-centric radius, and redshift and is consistent with the observed field and cluster stellar mass functions at z ∼ 1. We find that the satellite quenching time-scale is mass dependent, in conflict with some previous studies at low and intermediate redshift. Over the stellar mass range probed (M⋆ > 1010 M⊙), we find that the satellite quenching time-scale decreases with increasing satellite stellar mass from ∼1.6 Gyr at 1010 M⊙ to ∼0.6−1 Gyr at 1011 M⊙ and is roughly consistent with the total cold gas (HI + H2) depletion time-scales at intermediate z, suggesting that starvation may be the dominant driver of environmental quenching at z < 2. Finally, while environmental mechanisms are relatively efficient at quenching massive satellites, we find that the majority ($\sim 65{\!-\!}80{{\ \rm per\ cent}}$) of ultra-massive satellites (M⋆ > 1011 M⊙) are quenched prior to infall.

     
    more » « less