skip to main content


Title: Blind source separation with integrated photonics and reduced dimensional statistics

Microwave communications have witnessed an incipient proliferation of multi-antenna and opportunistic technologies in the wake of an ever-growing demand for spectrum resources, while facing increasingly difficult network management over widespread channel interference and heterogeneous wireless broadcasting. Radio frequency (RF) blind source separation (BSS) is a powerful technique for demixing mixtures of unknown signals with minimal assumptions, but relies on frequency dependent RF electronics and prior knowledge of the target frequency band. We propose photonic BSS with unparalleled frequency agility supported by the tremendous bandwidths of photonic channels and devices. Specifically, our approach adopts an RF photonic front-end to process RF signals at various frequency bands within the same array of integrated microring resonators, and implements a novel two-step photonic BSS pipeline to reconstruct source identities from the reduced dimensional statistics of front-end output. We verify the feasibility and robustness of our approach by performing the first proof-of-concept photonic BSS experiments on mixed-over-the-air RF signals across multiple frequency bands. The proposed technique lays the groundwork for further research in interference cancellation, radio communications, and photonic information processing.

 
more » « less
NSF-PAR ID:
10371439
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
23
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 6494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.

     
    more » « less
  2. Abstract

    Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.

     
    more » « less
  3. The radio frequency spectral shaper is an essential component in emerging multi-service mobile communications, multiband satellite and radar systems, and future 5G/6G radio frequency systems for equalizing spectral unevenness, removing out-of-band noise and interference, and manipulating multi-band signal simultaneously. While it is easy to achieve simple spectral functions using either conventional microwave photonic filters or the optical spectrum to microwave spectra mapping techniques, it is challenging to enable complex spectral shaping functions over tens of GHz bandwidth as well as to achieve point-by-point shaping capability to fulfill the needs in dynamic wireless communications. In this paper, we proposed and demonstrated a novel spectral shaping system, which utilizes a two-section algorithm to automatically decompose the target RF response into a series of Gaussian functions and to reconstruct the desired RF response by microwave photonic techniques. The devised spectral shaping system is capable of manipulating the spectral function in various bands (S, C, and X) simultaneously with step resolution of as fine as tens of MHz. The resolution limitation in optical spectral processing is mitigated using the discrete convolution technique. Over 10 dynamic and independently adjustable spectral control points are experimentally achieved based on the proposed spectral shaper.

     
    more » « less
  4. Research has shown that communications systems and receivers suffer from high power adjacent channel signals, called blockers, that drive the radio frequency (RF) front end into nonlinear operation. Since simple systems, such as the Internet of Things (IoT), will coexist with sophisticated communications transceivers, radars and other spectrum consumers, these need to be protected employing a simple, yet adaptive solution to RF nonlinearity. This paper therefore proposes a flexible data driven approach that uses a simple artificial neural network (ANN) to aid in the removal of the third order intermodulation distortion (IMD) as part of the demodulation process. We introduce and numerically evaluate two artificial intelligence (AI)-enhanced receivers—ANN as the IMD canceler and ANN as the demodulator. Our results show that a simple ANN structure can significantly improve the bit error rate (BER) performance of nonlinear receivers with strong blockers and that the ANN architecture and configuration depends mainly on the RF front end characteristics, such as the third order intercept point (IP3). We therefore recommend that receivers have hardware tags and ways to monitor those over time so that the AI and software radio processing stack can be effectively customized and automatically updated to deal with changing operating conditions. 
    more » « less
  5. Blind source separation (BSS) becomes popularly useful with the need for increased bandwidth utilization. However, the traditional radio-frequency (RF) electronics hardly offer the BSS the demanded frequency agility because of the inherent bandwidth limitation. The emerging integrated photonics, fortunately, can be an efficacious alternative. Here, we demonstrate a photonic BSS approach based on the microring (MRR) weightbank that achieves blind source separation of up to 13.8 GHz bandwidth. In addition, by implementing an improved MRR control method with an accuracy of up to 8.5 bits, the reduced errors give confidence in solving BSS problems with a large ill-condition number. 
    more » « less