skip to main content


Title: Competing Effects of Mountain Uplift and Landslide Erosion Over Earthquake Cycles
Abstract

Large earthquakes can construct mountainous topography by inducing rock uplift but also erode mountains by causing landslides. Observations following the 2008 Wenchuan earthquake show that landslide volumes in some cases match seismically induced uplift, raising questions about how the actions of individual earthquakes accumulate to build topography. Here we model the two‐dimensional surface displacement field generated over a full earthquake cycle accounting for coseismic deformation, postseismic relaxation, landslide erosion, and erosion‐induced isostatic compensation. We explore the related volume balance across different seismotectonic and topographic conditions and revisit the Wenchuan case in this context. The ratio (Ω) between landslide erosion and uplift is most sensitive to parameters determining landslide volumes (particularly earthquake magnitudeMw, seismic energy source depth, and failure susceptibility, as well as the seismological factor responsible for triggering landslides), and is moderately sensitive to the effective elastic thickness of lithosphere,Te. For a specified magnitude, more erosive events (higher Ω) tend to occur at shallower depth, in thicker‐Telithosphere, and in steeper, more landslide‐prone landscapes. For given landscape and seismotectonic conditions, the volumes of both landslides and uplift to first order positively scale withMwand seismic momentMo. However, higherMwearthquakes generate lower landslide and uplift volumes per unitMo, suggesting lower efficiency in the use of seismic energy to drive topographic change. With our model, we calculate the long‐term average seismic volume balance for the eastern Tibetan region and find that the net topographic effect of earthquakes in this region tends to be constructive rather than erosive. Overall, destructive events are rare when considering processes over the full earthquake cycle, although they are more likely if only considering the coseismic volume budget (as was the case for the 2008 Wenchuan earthquake where landsliding substantially offset coseismic uplift). Irrespective of the net budget, our results suggest that the erosive power of earthquakes plays an important role in mountain belt evolution, including by influencing structures and spatial patterns of deformation, for example affecting the wavelength of topography.

 
more » « less
Award ID(s):
1640894 1053504
NSF-PAR ID:
10371459
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
5
ISSN:
2169-9313
Page Range / eLocation ID:
p. 5101-5133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effects of strong ground shaking on hillslope stability can persist for many years after a large earthquake, leading to an increase in the rates of post earthquake land sliding. The factors that control the rate of post‐earthquake land sliding are poorly constrained, hindering our ability to reliably forecast how landscapes and landslide hazards and risk evolve. To address this, we use a unique data set comprising high‐resolution terrestrial laser scans and airborne lidar captured during and after the 2010–2011 Canterbury Earthquake Sequence, New Zealand. This earthquake sequence triggered thousands of rock falls, and rock and debris avalanches (collectively referred to as “rockfall”), resulting in loss‐of‐life and damage to residential dwellings, commercial buildings and other infrastructure in the Port Hills of Christchurch, New Zealand. This unique data set spans 5 years and includes five significant earthquakes. We used these data to (a) quantify the regional‐scale “rockfall” rates in response to these earthquakes and the postearthquake decay in rockfall rates with time; and (b) investigate the site‐specific factors controlling the location of seismic and nonseismic rockfalls using frequency ratios and logistic regression techniques. We found that rockfall rates increased significantly in response to the initial earthquake that generated the strongest shaking in the sequence—The MW6.2 22 February 2011 event—Compared to the long‐term background rates derived from the dating of pre‐2010 talus piles at the toe of the slopes. Non seismic rockfall rates also increased immediately after the 22 February 2011 earthquake and decayed with time following a power‐law trend. About 50% of the decay back to the pre‐earthquake rockfall rates occurred within 1–5 years after the 22 February 2011 earthquake. Our results show that the short‐term decay in rockfall rates over time, after the initial earthquake, was attributed to the subsequent erosion of seismically damaged rock mass materials caused by environmental processes such as rain. For earthquake‐induced rockfall at the regional‐scale, the peak ground accelerations is the most significant variable in forecasting rockfall volume, followed by the relative height above the base of the slope. For both earthquake and non‐seismic conditions at the site‐specific scale, the probability of rockfall increases when the adjacent areas have failed previously, indicating that accrued damage preconditions localized areas of the slope for subsequent failure. Such preconditioning is a crucial factor driving subsequent rockfalls; that is, future rockfalls are likely to cluster near areas that failed in the past.

     
    more » « less
  2. Abstract

    An important manifestation of the background or coseismic deformation surrounding megathrust earthquakes is the offshore microseismicity, which are difficult to be directly detected by land‐based seismic instruments. Here, we improve the capability of detecting offshore events by combining two popular techniques: backprojection (BP) imaging and matched‐filter (MF) detection. The BP method is effective in retrieving offshore seismicity (Mw> 4.5) buried in the coda wave of large earthquakes. The capability of the MF method depends on the availability of the template pool; therefore, the BP‐inferred events can be used as additional templates to expand the MF detections (BP‐MF). We performed the BP‐MF approach in the period within 600 days after the 2011Mw9.0 Tohoku earthquake. We find overall 44.2% more offshore events than those listed in the Japan Meteorological Agency (JMA) catalog. In the near‐trench area, we detect 213% more events. Among the newly detectedMw> 4events, the BP template contributions are twice more than those matched by the JMA templates. Based on the spatial consistency between aftershock‐depleted zones and large coseismic slip, we identify a possible large coseismic slip zone in the near‐trench region offshore Fukushima. Largebvalues (1.2) are found close to large aftershocks, possibly indicating localized pockets of small differential stresses. At several locations close to the trench,pvalues (0.93–1.11) are higher than those in the inland area (0.64–0.85). This may be due to the larger coseismic slip and hence larger stress drop of the outer‐rise normal‐faulting events compared to the deeper thrust‐faulting events.

     
    more » « less
  3. Rapid sediment accumulation rates (SAR) in a fan delta situated on the rapidly uplifting footwall of the Taormina normal fault in NE Sicily preserves a rare record of earthquakes and base level change for a tightly coupled source to sink system. We use this sedimentary archive to reconstruct the kinematics and slip history of the fault and further an understanding of how tectonic forcing across various scales are encoded in stratigraphy. A revised luminescence-based age model indicates that ~82 m of the Pagliara fan-delta foreset facies was deposited in ~11 ka at a mean SAR of ~0.74 cm/yr during MIS 7. Syn-depositional terrestrial cosmogenic nuclide (TCN) determined paleoerosion rates of 0.91±0.12 mm/yr and 1.31 ±0.61 mm/yr are similar to published modern erosion rates for the Pagliara basin of 0.97 ±0.11 mm/yr. At the stratigraphic scale, a time series of magnetic susceptibility (c) sampled at 1 m intervals in the foresets displays four ~2,800 yr / 20 m-thick cycles of growing c, bounded by sharp decreases that do not coincide with changes in sediment texture. The c of the low-grade metamorphic bedrock in the source is 20-100 times weaker than the c of rubified soils mantling the hillslopes, which is comparable to the c of the delta sediments. We propose that large, bedrock-cored landslides quasi-periodically deliver weak c sediment to the delta that dilutes a c signal otherwise dominated by the stripping of soil-mantled hillslopes. We propose that centennial-scale recurrence interval earthquakes are most capable at triggering a basin-scale landslide only after channel incision has increased relief of hillslopes to the threshold condition, which requires millennia to achieve. At the landscape scale of delta geometry and location, the Pagliara delta accumulated in a hanging wall basin that has since been inverted. We reconstruct the history of base level fall for the delta from an inversion of fluvial topography and apportion that record to its rock uplift, delta deposition, and eustatic components. We show that footwall uplift has been unsteady over the past 600 ka ranging from -1 to 3 mm/yr. The integration of our stratigraphic- and landscape scale observations furthers our understanding of the natural hazards related to normal fault earthquakes and their impact on sediment dynamics in this steep, active tectonic setting. 
    more » « less
  4. Abstract

    The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake.

     
    more » « less
  5. Abstract

    Post‐seismic debris flows are an important hazard following large earthquakes, propagating destruction downstream from hillslopes where coseismic landslides occur and extending damage for years after shaking stops. Data sets of post‐seismic debris flows are necessary to predict initiation and runout characteristics but are presently scarce. We used satellite imagery supplemented by field observations to compile an inventory of >1,000 debris flows associated with the 2015 Gorkha Earthquake in Nepal. We identified two distinct debris flow types: (1) Material from a coseismic landslide was remobilized in a steep channel during a later monsoon; and (2) a new post‐seismic hillslope failure occurred in saturated conditions and became fluidized and channelized. Runout distance was constrained by channel confluences and may be related to confluence geometry. Unstable landslide debris was largely flushed from steep channels during the first monsoon following the earthquake, and the rate of new hillslope failures tailed off over a few years.

     
    more » « less