skip to main content


Title: The role of the hadron-quark phase transition in core-collapse supernovae
ABSTRACT

The hadron-quark phase transition in quantum chromodynamics has been suggested as an alternative explosion mechanism for core-collapse supernovae. We study the impact of three different hadron-quark equations of state (EoS) with first-order (DD2F_SF, STOS-B145) and second-order (CMF) phase transitions on supernova dynamics by performing 97 simulations for solar- and zero-metallicity progenitors in the range of $14\tt {-}100\, \text{M}_\odot$. We find explosions only for two low-compactness models (14 and $16\, \text{M}_\odot$) with the DD2F_SF EoS, both with low explosion energies of ${\sim }10^{50}\, \mathrm{erg}$. These weak explosions are characterized by a neutrino signal with several minibursts in the explosion phase due to complex reverse shock dynamics, in addition to the typical second neutrino burst for phase-transition-driven explosions. The nucleosynthesis shows significant overproduction of nuclei such as 90Zr for the $14\hbox{-} \text{M}_\odot$ zero-metallicity model and 94Zr for the $16\hbox{-}\text{M}_\odot$ solar-metallicity model, but the overproduction factors are not large enough to place constraints on the occurrence of such explosions. Several other low-compactness models using the DD2F_SF EoS and two high-compactness models using the STOS EoS end up as failed explosions and emit a second neutrino burst. For the CMF EoS, the phase transition never leads to a second bounce and explosion. For all three EoS, inverted convection occurs deep in the core of the protocompact star due to anomalous behaviour of thermodynamic derivatives in the mixed phase, which heats the core to entropies up to 4kB/baryon and may have a distinctive gravitational-wave signature, also for a second-order phase transition.

 
more » « less
NSF-PAR ID:
10371473
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2554-2574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We have simulated the collapse and evolution of the core of a solar-metallicity 40Mstar and find that it explodes vigorously by the neutrino mechanism, despite its very high “compactness.” Within ∼1.5 s of explosion, a black hole forms. The explosion is very asymmetrical and has a total explosion energy of ∼1.6 × 1051erg. At black hole formation, its baryon mass is ∼2.434Mand gravitational mass is 2.286M. Seven seconds after black hole formation, an additional ∼0.2Mis accreted, leaving a black hole baryon mass of ∼2.63M. A disk forms around the proto−neutron star, from which a pair of neutrino-driven jets emanates. These jets accelerate some of the matter up to speeds of ∼45,000 km s−1and contain matter with entropies of ∼50. The large spatial asymmetry in the explosion results in a residual black hole recoil speed of ∼1000 km s−1. This novel black hole formation channel now joins the other black hole formation channel between ∼12 and ∼15Mdiscovered previously and implies that the black hole/neutron star birth ratio for solar-metallicity stars could be ∼20%. However, one channel leaves black holes in perhaps the ∼5–15Mrange with low kick speeds, while the other leaves black holes in perhaps the ∼2.5–3.0Mmass range with high kick speeds. However, even ∼8.8 s after core bounce the newly formed black hole is still accreting at a rate of ∼2 × 10−2Ms−1, and whether the black hole eventually achieves a significantly larger mass over time is yet to be determined.

     
    more » « less
  2. Aims . In this work, we study the structure of neutron stars under the effect of a poloidal magnetic field and determine the limiting largest magnetic field strength that induces a deformation such that the ratio between the polar and equatorial radii does not exceed 2%. We consider that, under these conditions, the description of magnetic neutron stars in the spherical symmetry regime is still satisfactory. Methods . We described different compositions of stars (nucleonic, hyperonic, and hybrid) using three state-of-the-art relativistic mean field models (NL3 ω ρ , MBF, and CMF, respectively) for the microscopic description of matter, all in agreement with standard experimental and observational data. The structure of stars was described by the general relativistic solution of both Einstein’s field equations assuming spherical symmetry and Einstein-Maxwell’s field equations assuming an axi-symmetric deformation. Results . We find a limiting magnetic moment on the order of 2 × 10 31 Am 2 , which corresponds to magnetic fields on the order of 10 16 G at the surface and 10 17 G at the center of the star, above which the deformation due to the magnetic field is above 2%, and therefore not negligible. We show that the intensity of the magnetic field developed in the star depends on the equation of state (EoS), and, for a given baryonic mass and fixed magnetic moment, larger fields are attained with softer EoS. We also show that the appearance of exotic degrees of freedom, such as hyperons or a quark core, is disfavored in the presence of a very strong magnetic field. As a consequence, a highly magnetized nucleonic star may suffer an internal conversion due to the decay of the magnetic field, which could be accompanied by a sudden cooling of the star or a gamma ray burst. 
    more » « less
  3. null (Ed.)
    In this article, there are 18 sections discussing various current topics in the field of relativistic heavy-ion collisions and related phenomena, which will serve as a snapshot of the current state of the art. Section 1 reviews experimental results of some recent light-flavored particle production data from ALICE collaboration. Other sections are mostly theoretical in nature. Very strong but transient magnetic field created in relativistic heavy-ion collisions could have important observational consequences. This has generated a lot of theoretical activity in the last decade. Sections 2, 7, 9, 10 and 11 deal with the effects of the magnetic field on the properties of the QCD matter. More specifically, Sec. 2 discusses mass of [Formula: see text] in the linear sigma model coupled to quarks at zero temperature. In Sec. 7, one-loop calculation of the anisotropic pressure are discussed in the presence of strong magnetic field. In Sec. 9, chiral transition and chiral susceptibility in the NJL model is discussed for a chirally imbalanced plasma in the presence of magnetic field using a Wigner function approach. Sections 10 discusses electrical conductivity and Hall conductivity of hot and dense hadron gas within Boltzmann approach and Sec. 11 deals with electrical resistivity of quark matter in presence of magnetic field. There are several unanswered questions about the QCD phase diagram. Sections 3, 11 and 18 discuss various aspects of the QCD phase diagram and phase transitions. Recent years have witnessed interesting developments in foundational aspects of hydrodynamics and their application to heavy-ion collisions. Sections 12 and 15–17 of this article probe some aspects of this exciting field. In Sec. 12, analytical solutions of viscous Landau hydrodynamics in 1+1D are discussed. Section 15 deals with derivation of hydrodynamics from effective covariant kinetic theory. Sections 16 and 17 discuss hydrodynamics with spin and analytical hydrodynamic attractors, respectively. Transport coefficients together with their temperature- and density-dependence are essential inputs in hydrodynamical calculations. Sections 5, 8 and 14 deal with calculation/estimation of various transport coefficients (shear and bulk viscosity, thermal conductivity, relaxation times, etc.) of quark matter and hadronic matter. Sections 4, 6 and 13 deal with interesting new developments in the field. Section 4 discusses color dipole gluon distribution function at small transverse momentum in the form of a series of Bells polynomials. Section 6 discusses the properties of Higgs boson in the quark–gluon plasma using Higgs–quark interaction and calculate the Higgs decays into quark and anti-quark, which shows a dominant on-shell contribution in the bottom-quark channel. Section 13 discusses modification of coalescence model to incorporate viscous corrections and application of this model to study hadron production from a dissipative quark–gluon plasma. 
    more » « less
  4. ABSTRACT

    We investigate the impact of rotation and magnetic fields on the dynamics and gravitational wave emission in 2D core–collapse supernova simulations with neutrino transport. We simulate 17 different models of $15\, {\rm M}_\odot$ and $39\, {\rm M}_\odot$ progenitor stars with various initial rotation profiles and initial magnetic fields strengths up to $10^{12}\, \mathrm{G}$, assuming a dipolar field geometry in the progenitor. Strong magnetic fields generally prove conducive to shock revival, though this trend is not without exceptions. The impact of rotation on the post-bounce dynamics is more variegated, in line with previous studies. A significant impact on the time-frequency structure of the gravitational wave signal is found only for rapid rotation or strong initial fields. For rapid rotation, the angular momentum gradient at the proto-neutron star surface can appreciably affect the frequency of the dominant mode, so that known analytic relations for the high-frequency emission band no longer hold. In case of two magnetorotational explosion models, the deviation from these analytic relations is even more pronounced. One of the magnetorotational explosions has been evolved to more than half a second after the onset of the explosion and shows a subsidence of high-frequency emission at late times. Its most conspicuous gravitational wave signature is a high-amplitude tail signal. We also estimate the maximum detection distances for our waveforms. The magnetorotational models do not stick out for higher detectability during the post-bounce and explosion phase.

     
    more » « less
  5. Abstract

    Observations of core-collapse supernovae (CCSNe) reveal a wealth of information about the dynamics of the supernova ejecta and its composition but very little direct information about the progenitor. Constraining properties of the progenitor and the explosion requires coupling the observations with a theoretical model of the explosion. Here we begin with the CCSN simulations of Couch et al., which use a nonparametric treatment of the neutrino transport while also accounting for turbulence and convection. In this work we use the SuperNova Explosion Code to evolve the CCSN hydrodynamics to later times and compute bolometric light curves. Focusing on Type IIP SNe (SNe IIP), we then (1) directly compare the theoretical STIR explosions to observations and (2) assess how properties of the progenitor’s core can be estimated from optical photometry in the plateau phase alone. First, the distribution of plateau luminosities (L50) and ejecta velocities achieved by our simulations is similar to the observed distributions. Second, we fit our models to the light curves and velocity evolution of some well-observed SNe. Third, we recover well-known correlations, as well as the difficulty of connecting any one SN property to zero-age main-sequence mass. Finally, we show that there is a usable, linear correlation between iron core mass andL50such that optical photometry alone of SNe IIP can give us insights into the cores of massive stars. Illustrating this by application to a few SNe, we find iron core masses of 1.3–1.5Mwith typical errors of 0.05M. Data are publicly available online on Zenodo: doi:10.5281/zenodo.6631964.

     
    more » « less