skip to main content

Title: Analysis of spin directions of galaxies in the DESI Legacy Survey

The DESI Legacy Survey is a digital sky survey with a large footprint compared to other Earth-based surveys, covering both the Northern and Southern hemispheres. This paper shows the distribution of the spin directions of spiral galaxies imaged by DESI Legacy Survey. A

simple analysis of dividing nearly 1.3 × 106 spiral galaxies into two hemispheres shows a higher number of galaxies spinning counterclockwise in the Northern hemisphere, and a higher number of galaxies spinning clockwise in the Southern hemisphere. That distribution is consistent with previous observations, but uses a far larger number of galaxies and a larger footprint. The larger footprint allows a comprehensive analysis without the need to fit the distribution into an a priori model, making this study different from all previous analyses of this kind. Fitting the spin directions of the galaxies to cosine dependence shows a dipole axis alignment with probability of P < 10−5. The analysis is done with a trivial selection of the galaxies, as well as simple explainable annotation algorithm that does not make use of any form of machine learning, deep learning, or pattern recognition. While further work will be required, these results are aligned with previous studies suggesting the more » possibility of a large-scale alignment of galaxy angular momentum.

« less
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 2281-2291
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The nature of galaxy spin is still not fully known. Iye, Yagi, and Fukumoto (2021, AJ, 907, 123) applied a 3D analysis to a dataset of bright SDSS galaxies that was used in the past for photometric analysis. They showed that the distribution of spin directions of spiral galaxies is random, providing a dipole axis with low statistical significance of 0.29σ. However, to show random distribution, two decisions were made, each of which can lead to random distribution regardless of the real distribution of the spin direction of galaxies. The first decision was to limit the dataset arbitrarily to z < 0.1, which is a redshift range in which previous literature already showed that random distribution is expected. More importantly, while the 3D analysis requires the redshift of each galaxy, the analysis was done with the photometric redshift. If the asymmetry existed, its signal is expected to be an order of magnitude weaker than the error of the photometric redshift, and therefore a low statistical signal under these conditions is expected. When using the exact same data without limiting to zphot < 0.1 and without using the photometric redshift, the distribution of the spin directions in that dataset showsmore »a statistical signal of >2σ. Code and data for reproducing the analysis are publicly available. These results are in agreement with other experiments with SDSS, Pan-STARRS, HST, and the DESI Legacy Survey. The paper also examines other previous studies that showed random distribution in galaxy spin directions. While further research will be required, the current evidence suggests that large-scale asymmetry between the number of clockwise and counterclockwise galaxies cannot be ruled out.

    « less
  2. Frey, Sandor (Ed.)
    The ability to collect unprecedented amounts of astronomical data has enabled the nomical data has enabled the stu scientific questions that were impractical to study in the pre-information era. This study uses large datasets collected by four different robotic telescopes to profile the large-scale distribution of the spin directions of spiral galaxies. These datasets cover the Northern and Southern hemispheres, in addition to data acquired from space by the Hubble Space Telescope. The data were annotated automatically by a fully symmetric algorithm, as well as manually through a long labor-intensive process, leading to a dataset of nearly 10^6 galaxies. The data show possible patterns of asymmetric distribution of the spin directions, and the patterns agree between the different telescopes. The profiles also agree when using automatic or manual annotation of the galaxies, showing very similar large-scale patterns. Combining all data from all telescopes allows the most comprehensive analysis of its kind to date in terms of both the number of galaxies and the footprint size. The results show a statistically significant profile that is consistent across all telescopes. The instruments used in this study are DECam, HST, SDSS, and Pan-STARRS. The paper also discusses possible sources of bias and analyzesmore »the design of previous work that showed different results. Further research will be required to understand and validate these preliminary observations.« less
  3. Spiral galaxies can spin clockwise or counterclockwise, and the spin direction of a spiral galaxy is a clear visual characteristic. Since in a sufficiently large universe the Universe is expected to be symmetric, the spin direction of a galaxy is merely the perception of the observer, and therefore, galaxies that spin clockwise are expected to have the same characteristics of galaxies spinning counterclockwise. Here, machine learning is applied to study the possible morphological differences between galaxies that spin in opposite directions. The dataset used in this study is a dataset of 77,840 spiral galaxies classified by their spin direction, as well as a smaller dataset of galaxies classified manually. A machine learning algorithm was applied to classify between images of clockwise galaxies and counterclockwise galaxies. The results show that the classifier was able to predict the spin direction of the galaxy by its image in accuracy higher than mere chance, even when the images in one of the classes were mirrored to create a dataset with consistent spin directions. That suggests that galaxies that seem to spin clockwise to an Earth-based observer are not necessarily fully symmetric to galaxies that spin counterclockwise; while further research is required, these results aremore »aligned with previous observations of differences between galaxies based on their spin directions.« less
  4. Abstract

    The Dark Energy Spectroscopic Instrument (DESI) is carrying out a five-year survey that aims to measure the redshifts of tens of millions of galaxies and quasars, including 8 million luminous red galaxies (LRGs) in the redshift range 0.4 <z≲ 1.0. Here we present the selection of the DESI LRG sample and assess its spectroscopic performance using data from Survey Validation (SV) and the first two months of the Main Survey. The DESI LRG sample, selected usingg,r,z, andW1 photometry from the DESI Legacy Imaging Surveys, is highly robust against imaging systematics. The sample has a target density of 605 deg−2and a comoving number density of 5 × 10−4h3Mpc−3in 0.4 <z< 0.8; this is a significantly higher density than previous LRG surveys (such as SDSS, BOSS, and eBOSS) while also extending toz∼ 1. After applying a bright star veto mask developed for the sample, 98.9% of the observed LRG targets yield confident redshifts (with a catastrophic failure rate of 0.2% in the confident redshifts), and only 0.5% of the LRG targets are stellar contamination. The LRG redshift efficiency varies with source brightness and effective exposure time, and we present a simple model that accurately characterizes this dependence. In the appendices, wemore »describe the extended LRG samples observed during SV.

    « less
  5. Abstract Previous observations of a large number of galaxies show differences between the photometry of spiral galaxies with clockwise spin patterns and spiral galaxies with counterclockwise spin patterns. In this study the mean magnitude of a large number of clockwise galaxies is compared to the mean magnitude of a large number of counterclockwise galaxies. The observed difference between clockwise and counterclockwise spiral galaxies imaged by the space-based COSMOS survey is compared to the differences between clockwise and counterclockwise galaxies imaged by the Earth-based SDSS and Pan-STARRS around the same field. The annotation of clockwise and counterclockwise galaxies is a fully automatic process that does not involve human intervention, and in all experiments both clockwise and counterclockwise galaxies are separated from the same fields. The comparison shows that the same asymmetry was identified by all three telescopes, providing strong evidence that the rotation direction of a spiral galaxy is linked to its luminosity as measured from Earth. Analysis of the luminosity difference using a large number of galaxies from different parts of the sky shows that the difference between clockwise and counterclockwise galaxies changes with the direction of observation, and oriented around an axis.