skip to main content

Title: A Rosetta Stone for Eccentric Gravitational Waveform Models

Orbital eccentricity is a key signature of dynamical binary black hole formation. The gravitational waves from a coalescing binary contain information about its orbital eccentricity, which may be measured if the binary retains sufficient eccentricity near merger. Dedicated waveforms are required to measure eccentricity. Several models have been put forward, and show good agreement with numerical relativity at the level of a few percent or better. However, there are multiple ways to define eccentricity for inspiralling systems, and different models internally use different definitions of eccentricity, making it difficult to compare eccentricity measurements directly. In this work, we systematically compare two eccentric waveform models,SEOBNREandTEOBResumS, by developing a framework to translate between different definitions of eccentricity. This mapping is constructed by minimizing the relative mismatch between the two models over eccentricity and reference frequency, before evolving the eccentricity of one model to the same reference frequency as the other model. We show that for a given value of eccentricity passed toSEOBNRE, one must input a 20%–50% smaller value of eccentricity toTEOBResumSin order to obtain a waveform with the same empirical eccentricity. We verify this mapping by repeating our analysis for eccentric numerical relativity simulations, demonstrating thatTEOBResumSreports a correspondingly smaller value of eccentricity thanSEOBNRE.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 172
["Article No. 172"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR. 
    more » « less
  2. The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of general relativity (GR) currently employ quasicircular waveforms. We quantify the effect of residual orbital eccentricity on the IMR consistency test. We find that eccentricity causes a significant systematic bias in the inferred final mass and spin of the remnant black hole at an orbital eccentricity (defined at 10 Hz) of e0≳0.1 in the LIGO band (for a total binary mass in the range 65-200M⊙). For binary black holes observed by Cosmic Explorer (CE), the systematic bias becomes significant for e0≳0.015 (for 200-600M⊙ systems). This eccentricity-induced bias on the final mass and spin leads to an apparent inconsistency in the IMR consistency test, manifesting as a false violation of GR. Hence, eccentric corrections to waveform models are important for constructing a robust test of GR, especially for third-generation detectors. We also estimate the eccentric corrections to the relationship between the inspiral parameters and the final mass and final spin; they are shown to be quite small. 
    more » « less
  3. Abstract

    We show that gas disks around the components of an orbiting binary system (so-called minidisks) may be susceptible to a resonant instability that causes the minidisks to become significantly eccentric. Eccentricity is injected by, and also induces, regular impacts between the minidisks at roughly the orbital period of the binary. Such eccentric minidisks are seen in vertically integrated, two-dimensional simulations of a circular, equal-mass binary accreting from a circumbinary gas disk with a Γ-law equation of state. Minidisk eccentricity is suppressed by the use of an isothermal equation of state. However, the instability still operates and can be revealed in a minimal disk-binary simulation by removing the circumbinary disk and feeding the minidisks from the component positions. Minidisk eccentricity is also suppressed when the gravitational softening length is large (≳4% of the binary semimajor axis), suggesting that its absence could be an artifact of widely adopted numerical approximations; a follow-up study in three dimensions with well-resolved, geometrically thin minidisks (aspect ratios ≲0.02) may be needed to assess whether eccentric minidisks can occur in real astrophysical environments. If they can, the electromagnetic signature may be important for discriminating between binary and single black hole scenarios for quasiperiodic oscillations in active galactic nuclei; in turn, this might aid in targeted searches with pulsar timing arrays for individual supermassive black hole binary sources of low-frequency gravitational waves.

    more » « less

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of high-resolution 2D simulations of binaries in local disc (shearing-box) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γ-law equation of state and adopt a robust post-processing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its long-term orbital evolution. We find that circular comparable-mass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening time-scales of the binaries are much shorter than their migration time-scales in the disc, for all reasonable binary and disc parameters.

    more » « less

    Next generation ground-based gravitational wave (GW) detectors are expected to detect ∼104–105 binary black holes (BBHs) per year. Understanding the formation pathways of these binaries is an open question. Orbital eccentricity can be used to distinguish between the formation channels of compact binaries, as different formation channels are expected to yield distinct eccentricity distributions. Due to the rapid decay of eccentricity caused by the emission of GWs, measuring smaller values of eccentricity poses a challenge for current GW detectors due to their limited sensitivity. In this study, we explore the potential of next generation GW detectors such as Voyager, Cosmic Explorer (CE), and Einstein Telescope (ET) to resolve the eccentricity of BBH systems. Considering a GWTC-3 like population of BBHs and assuming some fiducial eccentricity distributions as well as an astrophysically motivated eccentricity distribution (Zevin et al. 2021), we calculate the fraction of detected binaries that can be confidently distinguished as eccentric. We find that for Zevin eccentricity distribution, Voyager, CE, and ET can confidently measure the non-zero eccentricity for ${\sim} 3\%$, 9%, and 13% of the detected BBHs, respectively. In addition to the fraction of resolvable eccentric binaries, our findings indicate that Voyager, CE, and ET require typical minimum eccentricities ≳0.02, 5 × 10−3, and 10−3 at 10 Hz GW frequency, respectively, to identify a BBH system as eccentric. The better low-frequency sensitivity of ET significantly enhances its capacity to accurately measure eccentricity.

    more » « less