Galaxy clusters enable unique opportunities to study cosmology, dark matter, galaxy evolution, and strongly lensed transients. We here present a new cluster-finding algorithm, CluMPR (Clusters from Masses and Photometric Redshifts), that exploits photometric redshifts (photo-z’s) as well as photometric stellar mass measurements. CluMPR uses a 2D binary search tree to search for overdensities of massive galaxies with similar redshifts on the sky and then probabilistically assigns cluster membership by accounting for photo-z uncertainties. We leverage the deep DESI Legacy Survey grzW1W2 imaging over one-third of the sky to create a catalogue of $\sim 300\, 000$ galaxy cluster candidates out to z = 1, including tabulations of member galaxies and estimates of each cluster’s total stellar mass. Compared to other methods, CluMPR is particularly effective at identifying clusters at the high end of the redshift range considered (z = 0.75–1), with minimal contamination from low-mass groups. These characteristics make it ideal for identifying strongly lensed high-redshift supernovae and quasars that are powerful probes of cosmology, dark matter, and stellar astrophysics. As an example application of this cluster catalogue, we present a catalogue of candidate wide-angle strongly lensed quasars in Appendix C. The nine best candidates identified from this sample include two known lensed quasar systems and a possible changing-look lensed QSO with SDSS spectroscopy. All code and catalogues produced in this work are publicly available (see Data Availability).
Three-dimensional wide-field galaxy surveys are fundamental for cosmological studies. For higher redshifts (z ≳ 1.0), where galaxies are too faint, quasars still trace the large-scale structure of the Universe. Since available telescope time limits spectroscopic surveys, photometric methods are efficient for estimating redshifts for many quasars. Recently, machine-learning methods are increasingly successful for quasar photometric redshifts, however, they hinge on the distribution of the training set. Therefore, a rigorous estimation of reliability is critical. We extracted optical and infrared photometric data from the cross-matched catalogue of the WISE All-Sky and PS1 3$\pi$ DR2 sky surveys. We trained an XGBoost regressor and an artificial neural network on the relation between colour indices and spectroscopic redshift. We approximated the effective training set coverage with the K-nearest neighbours algorithm. We estimated reliable photometric redshifts of 2 562 878 quasars which overlap with the training set in feature space. We validated the derived redshifts with an independent, clustering-based redshift estimation technique. The final catalogue is publicly available.
more » « less- NSF-PAR ID:
- 10371571
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 516
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2662-2670
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract The accurate estimation of photometric redshifts is crucial to many upcoming galaxy surveys, for example, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). Almost all Rubin extragalactic and cosmological science requires accurate and precise calculation of photometric redshifts; many diverse approaches to this problem are currently in the process of being developed, validated, and tested. In this work, we use the photometric redshift code GPz to examine two realistically complex training set imperfections scenarios for machine learning based photometric redshift calculation: (i) where the spectroscopic training set has a very different distribution in color–magnitude space to the test set, and (ii) where the effect of emission line confusion causes a fraction of the training spectroscopic sample to not have the true redshift. By evaluating the sensitivity of GPz to a range of increasingly severe imperfections, with a range of metrics (both of photo- z point estimates as well as posterior probability distribution functions, PDFs), we quantify the degree to which predictions get worse with higher degrees of degradation. In particular, we find that there is a substantial drop-off in photo- z quality when line-confusion goes above ∼1%, and sample incompleteness below a redshift of 1.5, for an experimental setup using data from the Buzzard Flock synthetic sky catalogs.more » « less
-
ABSTRACT Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging surveys like the Rubin Observatory Legacy Survey of Space and Time are all critically dependent on estimates of photometric redshifts. Capsule networks are a new type of neural network architecture that is better suited for identifying morphological features of the input images than traditional convolutional neural networks. We use a deep capsule network trained on ugriz images, spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ∼400 000 Sloan Digital Sky Survey galaxies to do photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a fraction of catastrophic outliers that are comparable to or better than current methods for SDSS main galaxy sample-like data sets (r ≤ 17.8 and zspec ≤ 0.4) while requiring less data and fewer trainable parameters. Furthermore, the decision-making of our capsule network is much more easily interpretable as capsules act as a low-dimensional encoding of the image. When the capsules are projected on a two-dimensional manifold, they form a single redshift sequence with the fraction of spirals in a region exhibiting a gradient roughly perpendicular to the redshift sequence. We perturb encodings of real galaxy images in this low-dimensional space to create synthetic galaxy images that demonstrate the image properties (e.g. size, orientation, and surface brightness) encoded by each dimension. We also measure correlations between galaxy properties (e.g. magnitudes, colours, and stellar mass) and each capsule dimension. We publicly release our code, estimated redshifts, and additional catalogues at https://biprateep.github.io/encapZulate-1.
-
null (Ed.)ABSTRACT Cosmological analyses of galaxy surveys rely on knowledge of the redshift distribution of their galaxy sample. This is usually derived from a spectroscopic and/or many-band photometric calibrator survey of a small patch of sky. The uncertainties in the redshift distribution of the calibrator sample include a contribution from shot noise, or Poisson sampling errors, but, given the small volume they probe, they are dominated by sample variance introduced by large-scale structures. Redshift uncertainties have been shown to constitute one of the leading contributions to systematic uncertainties in cosmological inferences from weak lensing and galaxy clustering, and hence they must be propagated through the analyses. In this work, we study the effects of sample variance on small-area redshift surveys, from theory to simulations to the COSMOS2015 data set. We present a three-step Dirichlet method of resampling a given survey-based redshift calibration distribution to enable the propagation of both shot noise and sample variance uncertainties. The method can accommodate different levels of prior confidence on different redshift sources. This method can be applied to any calibration sample with known redshifts and phenotypes (i.e. cells in a self-organizing map, or some other way of discretizing photometric space), and provides a simple way of propagating prior redshift uncertainties into cosmological analyses. As a worked example, we apply the full scheme to the COSMOS2015 data set, for which we also present a new, principled SOM algorithm designed to handle noisy photometric data. We make available a catalogue of the resulting resamplings of the COSMOS2015 galaxies.more » « less
-
Abstract Upcoming photometric surveys will discover tens of thousands of Type Ia supernovae (SNe Ia), vastly outpacing the capacity of our spectroscopic resources. In order to maximize the scientific return of these observations in the absence of spectroscopic information, we must accurately extract key parameters, such as SN redshifts, with photometric information alone. We present Photo-
z SNthesis, a convolutional neural network-based method for predicting full redshift probability distributions from multi-band supernova lightcurves, tested on both simulated Sloan Digital Sky Survey (SDSS) and Vera C. Rubin Legacy Survey of Space and Time data as well as observed SDSS SNe. We show major improvements over predictions from existing methods on both simulations and real observations as well as minimal redshift-dependent bias, which is a challenge due to selection effects, e.g., Malmquist bias. Specifically, we show a 61× improvement in prediction bias 〈Δz 〉 on PLAsTiCC simulations and 5× improvement on real SDSS data compared to results from a widely used photometric redshift estimator, LCFIT+Z. The PDFs produced by this method are well constrained and will maximize the cosmological constraining power of photometric SNe Ia samples.