skip to main content


Title: Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest
Abstract

Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4and CO2fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4and CO2in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4production and limit CO2release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m−2 d−1and absorbed 1.6 ± 0.2 g CO2‐C m−2 d−1(mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4emissions decreased significantly (0.002 ± 0.001 g CH4‐C m−2 d−1) but remained a net source, while the net CO2flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2and CH4were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m−2(as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m−2in aerobic phases), high CH4effluxes during the anaerobic flooded phase and modest CH4effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.

 
more » « less
NSF-PAR ID:
10371605
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
6
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1967-1981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Limited information on greenhouse gas emissions from tropical dry forest soils still hinders the assessment of the sources/sinks from this ecosystem and their contribution at global scales. Particularly, rewetting events after the dry season can have a significant effect on soil biogeochemical processes and associated exchange of greenhouse gases. This study evaluated the temporal variation and annual fluxes of CO2, N2O, and CH4from soils in a tropical dry forest successional gradient. After a prolonged drought of 5 months, large emissions pulses of CO2and N2O were observed at all sites following first rain events, caused by the “Birch effect,” with a significant effect on the net ecosystem exchange and the annual emissions budget. Annual CO2emissions were greatest for the young forest (8,556 kg C ha−1yr−1) followed by the older forest (7,420 kg C ha−1yr−1) and the abandoned pasture (7,224 kg C ha−1yr−1). Annual emissions of N2O were greatest for the forest sites (0.39 and 0.43 kg N ha−1yr−1) and least in the abandoned pasture (0.09 kg N ha−1yr−1). CH4uptake was greatest in the older forest (−2.61 kg C ha−1yr−1) followed by the abandoned pasture (−0.69 kg C ha−1yr−1) and the young forest (−0.58 kg C ha−1yr−1). Fluxes were mainly influenced by soil moisture, microbial biomass, and soil nitrate and ammonium concentrations. Annual CO2and N2O soil fluxes of tropical dry forests in this study and others from the literature were much lower than the annual fluxes in wetter tropical forests. Conversely, tropical dry forests and abandoned pastures are on average stronger sinks for CH4than wetter tropical forests.

     
    more » « less
  2. Abstract

    Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate.

     
    more » « less
  3. Abstract

    Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, toSphagnumbog underlain by permafrost, toEriophorum‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO2and CH4exchange, and 21 core profiles for210Pb and14C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2sink, but this CO2sink is increasingly offset by rising CH4emissions, dominated by modern carbon as determined by14C. The higher CH4emissions result in higher net CO2‐equivalentemissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.

     
    more » « less
  4. Abstract

    Inundated tropical forests are underrepresented in analyses of the global carbon cycle and constitute 80% of the surface area of aquatic environments in the lowland Amazon basin. Diel variations in CO2concentrations and exchanges with the atmosphere were investigated from August 2014 to September 2016 in two flooded forests sites with different wind exposure within the central Amazon floodplain (3°23′S, 60°18′W). CO2profiles and estimates of air–water gas exchange were combined with ancillary environmental measurements. Surface CO2concentrations ranged from 19 to 329 μM, CO2fluxes ranged from −0.8 to 55 mmol m−2 hr−1and gas transfer velocities ranged from 0.2 to 17 cm hr−1. CO2concentrations and fluxes were highest during the high water period. CO2fluxes were three times higher at a site with more wind exposure (WE) compared to one with less exposure (WP). Emissions were higher at the WP site during the day, whereas they were higher at night at the WE site due to vertical mixing. CO2concentrations and fluxes were lower at the W P site following an extended period of exceptionally low water. The CO2flux from the water in the flooded forest was about half of the net primary production of the forest estimated from the literature. Mean daily fluxes measured in our study (182 ± 247 mmol m−2d−1) are higher than or similar to the few other measurements in waters within tropical and subtropical flooded forests and highlight the importance of flooded forests in carbon budgets.

     
    more » « less
  5. Abstract

    Tropical floodplains are an important source of methane (CH4) to the atmosphere, and ebullitive fluxes are likely to be important. We report direct measurements of CH4ebullition in common habitats on the Amazon floodplain over two years based on floating chambers that allowed detection of bubbles, and submerged bubble traps. Ebullition was highly variable in space and time. Of the 840 floating chamber measurements (equivalent to 8,690 min of 10‐min deployments), 22% captured bubbles. Ebullitive CH4fluxes, measured using bubble traps deployed for a total of approximately 230 days, ranged from 0 to 109 mmol CH4m−2 d−1, with a mean of 4.4 mmol CH4m−2 d−1. During falling water, a hydroacoustic echosounder detected bubbles in 24% of the 70‐m segments over 34 km. Ebullitive flux increased as the water level fell faster during falling water periods. In flooded forests, highest ebullitive fluxes occurred during falling water, while in open water and herbaceous plant habitats, higher ebullitive fluxes were measured during low water periods. The contribution of diffusive plus ebullitive CH4flux represented by ebullition varied from 1% (high and rising water in open water of the lake) to 93% (falling water in flooded forests) based on bubble traps. Combining ebullitive and diffusive fluxes among habitats in relation to variations in water depth and areal coverage of aquatic habitats provides the basis for improved floodplain‐wide estimates of CH4evasion.

     
    more » « less