Nanomaterials have been extensively explored in developing sensors due to their unique properties, contributing to the development of reliable sensor designs with improved sensitivity and specificity. Herein, we propose the construction of a fluorescent/electrochemical dual-mode self-powered biosensor for advanced biosensing using DNA-templated silver nanoclusters (AgNCs@DNA). AgNC@DNA, due to its small size, exhibits advantageous characteristics as an optical probe. We investigated the sensing efficacy of AgNCs@DNA as a fluorescent probe for glucose detection. Fluorescence emitted by AgNCs@DNA served as the readout signal as a response to more H2O2 being generated by glucose oxidase for increasing glucose levels. The second readout signal of this dual-mode biosensor was utilized via the electrochemical route, where AgNCs served as charge mediators between the glucose oxidase (GOx) enzyme and carbon working electrode during the oxidation process of glucose catalyzed by GOx. The developed biosensor features low-level limits of detection (LODs), ~23 μM for optical and ~29 μM for electrochemical readout, which are much lower than the typical glucose concentrations found in body fluids, including blood, urine, tears, and sweat. The low LODs, simultaneous utilization of different readout strategies, and self-powered design demonstrated in this study open new prospects for developing next-generation biosensor devices. 
                        more » 
                        « less   
                    
                            
                            Single‐Atomic Iron Doped Carbon Dots with Both Photoluminescence and Oxidase‐Like Activity
                        
                    
    
            Abstract Multifunctional nanozymes can benefit biochemical analysis via expanding sensing modes and enhancing analytical performance, but designing multifunctional nanozymes to realize the desired sensing of targets is challenging. In this work, single‐atomic iron doped carbon dots (SA Fe‐CDs) are designed and synthesized via a facile in situ pyrolysis process. The small‐sized CDs not only maintain their tunable fluorescence, but also serve as a support for loading dispersed active sites. Monoatomic Fe offers SA Fe‐CDs exceptional oxidase‐mimetic activity to catalyze 3,3′,5,5′‐tetramethylbenzidine (TMB) oxidation with fast response (Vmax = 10.4 nM s‐1) and strong affinity (Km = 168 µM). Meanwhile, their photoluminescence is quenched by the oxidation product of TMB due to inner filter effect. Phosphate ions (Pi) can suppress the oxidase‐mimicking activity and restore the photoluminescence of SA Fe‐CDs by interacting with Fe active sites. Based on this principle, a dual‐mode colorimetric and fluorescence assay of Pi with high sensitivity, selectivity, and rapid response is established. This work paves a path to develop multifunctional enzyme‐like catalysts, and offers a simple but efficient dual‐mode method for phosphate monitoring, which will inspire the exploration of multi‐mode sensing strategies based on nanozyme catalysis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2031494
- PAR ID:
- 10371615
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 37
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity.more » « less
- 
            Abstract The effect of rare earth (RE) single atoms on photocatalytic activity is very complex due to its special electronic configuration, which leads to few reports on the RE single atoms. Here, Dy3+single atom composite photocatalysts are successfully constructed based on both the special role of Dy3+and the special advantages of CdS/g‐C3N4heterojunction in the field of photocatalysis. The results show that an efficient way of electron transfer is provided to promote charge separation, and the dual functions of CO2molecular activation of rare‐earth single atom and 4flevels as electron transport bridge are fully exploited. It is exciting that under visible‐light irradiation, the catalytic performance of CdS:Dy3+/g‐C3N4is≈6.9 times higher than that of pure g‐C3N4. The catalytic performance of CdS:Dy3+and CdS:Dy3+/g‐C3N4are≈7 and≈13.7 times higher than those of pure CdS, respectively. Besides, not all RE ions are suitable for charge transfer bridges, which is not only related to the 4flevels of RE ions but also related to the bandgap structure of CdS and g‐C3N4. The pattern of combining single‐atom catalysis and heterojunction opens up new methods for enhancing photocatalytic activity.more » « less
- 
            Abstract Fe-containing transition-metal (oxy)hydroxides are highly active oxygen-evolution reaction (OER) electrocatalysts in alkaline media and ubiquitously form across many materials systems. The complexity and dynamics of the Fe sites within the (oxy)hydroxide have slowed understanding of how and where the Fe-based active sites form—information critical for designing catalysts and electrolytes with higher activity and stability. We show that where/how Fe species in the electrolyte incorporate into host Ni or Co (oxy)hydroxides depends on the electrochemical history and structural properties of the host material. Substantially less Fe is incorporated from Fe-spiked electrolyte into Ni (oxy)hydroxide at anodic potentials, past the nominally Ni2+/3+redox wave, compared to during potential cycling. The Fe adsorbed under constant anodic potentials leads to impressively high per-Fe OER turn-over frequency (TOFFe) of ~40 s−1at 350 mV overpotential which we attribute to under-coordinated “surface” Fe. By systematically controlling the concentration of surface Fe, we find TOFFeincreases linearly with the Fe concentration. This suggests a changing OER mechanism with increased Fe concentration, consistent with a mechanism involving cooperative Fe sites in FeOxclusters.more » « less
- 
            Abstract The electrochemical reduction of nitrates (NO3−) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3synthesis cost‐competitive with current technologies, high NH3partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe‐based materials is leveraged to synthesize a novel active particle‐active support system with Fe2O3nanoparticles supported on atomically dispersed Fe–N–C. The optimized 3×Fe2O3/Fe–N–C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3of 1.95 A cm−2at a Faradaic efficiency (FE) for NH3of 100% and an NH3yield rate over 9 mmol hr−1cm−2. Operando XANES and post‐mortem XPS reveal the importance of a pre‐reduction activation step, reducing the surface Fe2O3(Fe3+) to highly active Fe0sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3particles and Fe–Nxsites at highly cathodic potentials, maintaining a current of −1.3 A cm−2over 24 hours. This work exhibits an effective and durable active particle‐active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
