skip to main content


Title: Searching for nascent planetary nebulae: OHPNe candidates in the SPLASH survey
ABSTRACT

The evolution of asymptotic giant branch stars from the spherical symmetry into the diverse shapes of planetary nebulae (PNe) is a topic of intensive research. Young PNe provide a unique opportunity to characterize the onset of this transitional phase. In particular, OH maser-emitting PNe (OHPNe) are considered nascent PNe. In fact, only six OHPNe have been confirmed to date. In order to identify and characterize more OHPNe, we processed the unpublished continuum data of the interferometric follow-up of the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH). We then matched the interferometric positions of OH maser and radio continuum emission, considering the latter as a possible tracer of free–free emission from photoionized gas, characteristic of PNe. We report eight objects with a positive coincidence, four of which are classified as candidate OHPNe here for the first time (IRAS 16372–4808, IRAS 17494–2645, IRAS 18019–2216, and OH 341.6811+00.2634). Available evidence strongly indicates that they are evolved stars, while the comparison with confirmed OHPNe indicates that they are likely to be PNe. Their final confirmation as bona fide PNe, however, requires optical/infrared spectroscopy. The obtained spectral indices of the radio continuum emission (between ≃0.4–1.3) are consistent with partially optically thick free–free emission from photoionized gas. Also, they cluster in the same region of a WISE colour–colour diagram as that of the confirmed OHPNe ($9.5\lesssim[3.4]{-}[22]\lesssim13.5$, and $4.0\lesssim[4.6]{-}[12] \lesssim7.0$), thus this diagram could help to identify more OHPNe candidates in the future.

 
more » « less
NSF-PAR ID:
10371626
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2235-2251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present Very Large Array 1.3 cm continuum and 22.2 GHz H2O maser observations of the high-mass protostellar object IRAS 19035+0641 A. Our observations unveil an elongated bipolar 1.3 cm continuum structure at scales ≲500 au, which, together with a rising in-band spectral index, strongly suggests that the radio emission toward IRAS 19035+0641 A arises from an ionized jet. In addition, eight individual water maser spots well aligned with the jet axis were identified. The StokesVspectrum of the brightest H2O maser line (∼100 Jy) shows a possible Zeeman splitting and is well represented by the derivatives of two Gaussian components fitted to the StokesIprofile. The measuredBlosare 123 (±27) and 156 (±8) mG, translating to a preshock magnetic field of ≈7 mG. Subsequent observations to confirm the Zeeman splitting showed intense variability in all the water maser spots, with the brightest maser completely disappearing. The observed variability in a 1 yr timescale could be the result of an accretion event. These findings strengthen our interpretation of IRAS 19035+0641 A as a high-mass protostar in an early accretion/outflow evolutionary phase.

     
    more » « less
  2. ABSTRACT

    We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud. The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ∼7° × 7° and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ∼11 μJy beam−1. The catalogue produced from these images contains 108 330 point sources and 517 compact extended sources. We also describe a UHF (544–1088 MHz) single pointing observation. We report the detection of a new confirmed Supernova Remnant (SNR; MCSNR J0100–7211) with an X-ray magnetar at its centre and 10 new SNR candidates. This is in addition to the detection of 21 previously confirmed SNRs and two previously noted SNR candidates. Our new SNR candidates have typical surface brightness an order of magnitude below those previously known, and on the whole they are larger. The high sensitivity of the MeerKAT survey also enabled us to detect the bright end of the SMC Planetary Nebulae (PNe) sample – point-like radio emission is associated with 38 of 102 optically known PNe, of which 19 are new detections. Lastly, we present the detection of three foreground radio stars amidst 11 circularly polarized sources, and a few examples of morphologically interesting background radio galaxies from which the radio ring galaxy ESO 029–G034 may represent a new type of radio object.

     
    more » « less
  3. Abstract

    We present Atacama Large Millimeter Array band 6/7 (1.3 mm/0.87 mm) and Very Large Array Ka-band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star-forming region. We characterize the continuum and associated molecular line emission toward the most luminous protostars, i.e., IRS1 and IRS3, on ∼100 au (0.″2) scales. IRS1 is partly resolved in the millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well-resolved disk appearance in the millimeter continuum and is further resolved into a close binary system separated by ∼40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH,13CH3OH, and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks and give constraints on physical parameters with a Markov Chain Monte Carlo routine. The IRS3 binary system is estimated to have a total mass of 1.4–1.5M. IRS1 has a central mass of 3–5Mbased on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2emission, are not always consistent, and for IRS1 these can be misaligned by ∼50°. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.

     
    more » « less
  4. Abstract

    We have observed the compact H ii region complex nearest to the dynamical center of the Galaxy, G−0.02−0.07, using ALMA in the H42α recombination line, CS J = 2–1, H13CO+J = 1–0, and SiO v = 0, J = 2–1 emission lines, and the 86 GHz continuum emission. The H ii regions HII-A to HII-C in the cluster are clearly resolved into a shell-like feature with a bright half and a dark half in the recombination line and continuum emission. The analysis of the absorption features in the molecular emission lines show that H ii-A, B, and C are located on the near side of the “Galactic center 50 km s−1 molecular cloud” (50MC), but HII-D is located on the far side of it. The electron temperatures and densities ranges are Te = 5150–5920 K and ne = 950–2340 cm−3, respectively. The electron temperatures in the bright half are slightly lower than those in the dark half, while the electron densities in the bright half are slightly higher than those in the dark half. The H ii regions are embedded in the ambient molecular gas. There are some molecular gas components compressed by a C-type shock wave around the H ii regions. From the line width of the H42α recombination line, the expansion velocities of HII-A, HII-B, HII-C, and HII-D are estimated to be Vexp = 16.7, 11.6, 11.1, and 12.1 km s−1, respectively. The expansion timescales of HII-A, HII-B, HII-C, and HII-D are estimated to be tage ≃ 1.4 × 104, 1.7 × 104, 2.0 × 104, and 0.7 × 104 yr, respectively. The spectral types of the central stars from HII-A to HII-D are estimated to be O8V, O9.5V, O9V, and B0V, respectively. These derived spectral types are roughly consistent with the previous radio estimation. The positional relation among the H ii regions, the SiO molecule enhancement area, and Class-I maser spots suggest that a shock wave caused by a cloud–cloud collision propagated along the line from HII-C to HII-A in the 50MC. The shock wave would have triggered the massive star formation.

     
    more » « less
  5. ABSTRACT

    This paper presents a multiwavelength investigation of the Galactic H ii region IRAS 17149 − 3916. Using the Giant Meterwave Radio Telescope, India, first low-frequency radio continuum observations at 610 and 1280 MHz for this region are presented. The ionized gas emission displays an interesting cometary morphology, which is likely powered by the early-type source, E4 (IRS-1). The origin of the cometary morphology is discussed under the framework of the widely accepted bow shock, champagne flow, and clumpy cloud mechanisms. The mid- and far-infrared data from Spitzer-GLIMPSE and Herschel-Hi-GAL reveal a complex network of pillars, clumps, bubble, filaments, and arcs suggesting the profound influence of massive stars on the surrounding medium. Triggered star formation at the tip of an observed pillar structure is reported. High-resolution ALMA continuum data show a string of cores detected within the identified clumps. The core masses are well explained by thermal Jeans fragmentation and support the hierarchical fragmentation scenario. Four ‘super-Jeans’ cores are identified which, at the resolution of the present data set, are suitable candidates to form high-mass stars.

     
    more » « less