The neural Ordinary Differential Equation (ODE) model has shown success in learning complex continuous-time processes from observations on discrete time stamps. In this work, we consider the modeling and forecasting of time series data that are non-stationary and may have sharp changes like spikes. We propose an RNN-based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time development of the hidden states, and we adaptively select time steps based on the steepness of changes of the data over time so as to train the model more efficiently for the "spike-like" time series. Theoretically, RNN-ODE-Adap yields provably a consistent estimation of the intensity function for the Hawkes-type time series data. We also provide an approximation analysis of the RNN-ODE model showing the benefit of adaptive steps. The proposed model is demonstrated to achieve higher prediction accuracy with reduced computational cost on simulated dynamic system data and point process data and on a real electrocardiography dataset.
more »
« less
NeuroView-RNN: It’s About Time
Recurrent Neural Networks (RNNs) are important tools for processing sequential data such as time-series or video. Interpretability is defined as the ability to be understood by a person and is different from explainability, which is the ability to be explained in a mathematical formulation. A key interpretability issue with RNNs is that it is not clear how each hidden state per time step contributes to the decision-making process in a quantitative manner. We propose NeuroView-RNN as a family of new RNN architectures that explains how all the time steps are used for the decision-making process. Each member of the family is derived from a standard RNN architecture by concatenation of the hidden steps into a global linear classifier. The global linear classifier has all the hidden states as the input, so the weights of the classifier have a linear mapping to the hidden states. Hence, from the weights, NeuroView-RNN can quantify how important each time step is to a particular decision. As a bonus, NeuroView-RNN also offers higher accuracy in many cases compared to the RNNs and their variants. We showcase the benefits of NeuroView-RNN by evaluating on a multitude of diverse time-series datasets.
more »
« less
- PAR ID:
- 10371728
- Date Published:
- Journal Name:
- FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency
- Page Range / eLocation ID:
- 1683 to 1697
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we consider the training stability of recurrent neural networks (RNNs) and propose a family of RNNs, namely SBO-RNN, that can be formulated using stochastic bilevel optimization (SBO). With the help of stochastic gradient descent (SGD), we manage to convert the SBO problem into an RNN where the feedforward and backpropagation solve the lower and upper-level optimization for learning hidden states and their hyperparameters, respectively. We prove that under mild conditions there is no vanishing or exploding gradient in training SBO-RNN. Empirically we demonstrate our approach with superior performance on several benchmark datasets, with fewer parameters, less training data, and much faster convergence. Code is available at https://zhang-vislab.github.io.more » « less
-
Identifying hidden interactions within complex systems is key to unlocking deeper insights into their operational dynamics, including how their elements affect each other and contribute to the overall system behavior. For instance, in neuroscience, discovering neuron-to-neuron interactions is essential for understanding brain function; in ecology, recognizing interactions among populations is key to understanding complex ecosystems. Such systems, often modeled as dynamical systems, typically exhibit noisy high-dimensional and non-stationary temporal behavior that renders their identification challenging. Existing dynamical system identification methods typically yield operators that accurately capture short-term behavior but fail to predict long-term trends, suggesting an incomplete capture of the underlying process. Methods that consider extended forecasts (e.g., recurrent neural networks) lack explicit representations of element-wise interactions and require substantial training data, thereby failing to capture interpretable network operators. Here we introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS), a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data. LINOCS integrates several multi-step predictions with adaptive weights during training to recover dynamical operators that can yield accurate long-term predictions. We demonstrate LINOCS’ ability to recover the ground truth dynamical operators underlying synthetic time-series data for multiple dynamical systems models (including linear, piece-wise linear, time-changing linear systems’ decomposition, and regularized linear time-varying systems) as well as its capability to produce meaningful operators with robust reconstructions through various real-world examplesmore » « less
-
The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN architecture remains to be kernelized, namely, the recurrent neural network (RNN). In this paper we introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs. A key property of the RNTK should greatly benefit practitioners is its ability to compare inputs of different length. To this end, we characterize how the RNTK weights different time steps to form its output under different initialization parameters and nonlinearity choices. A synthetic and 56 real-world data experiments demonstrate that the RNTK offers significant performance gains over other kernels, including standard NTKs, across a wide array of data sets.more » « less
-
Recurrent neural networks (RNNs) trained on a diverse ensemble of cognitive tasks, as described by Yang et al. (2019); Khona et al. (2023), have been shown to exhibit functional modularity, where neurons organize into discrete functional clusters, each specialized for specific shared computational subtasks. However, these RNNs do not demonstrate anatomical modularity, where these functionally specialized clusters also have a distinct spatial organization. This contrasts with the human brain which has both functional and anatomical modularity. Is there a way to train RNNs to make them more like brains in this regard? We apply a recent machine learning method, brain-inspired modular training (BIMT), to encourage neural connectivity to be local in space. Consequently, hidden neuron organization of the RNN forms spatial structures reminiscent of those of the brain: spatial clusters which correspond to functional clusters. Compared to standard L1 regularization and absence of regularization, BIMT exhibits superior performance by optimally balancing between task performance and sparsity. This balance is quantified both in terms of the number of active neurons and the cumulative wiring length. In addition to achieving brain-like organization in RNNs, our findings also suggest that BIMT holds promise for applications in neuromorphic computing and enhancing the interpretability of neural network architectures.more » « less
An official website of the United States government

