Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
more »
« less
Multiphase chemistry in the troposphere: It all starts … and ends … with gases
Abstract When the phenomena of smog and acid deposition were first recognized, it was largely gas phase chemists and photochemists who leapt into the fray to untangle the sources and chemistry involved. Over time, the importance of multiphase chemistry was recognized, as illustrated in a dramatic manner with the discovery of the Antarctic ozone hole which is driven by heterogeneous chemistry on polar stratospheric clouds. Since then, it has become clear that multiphase chemistry is central to both the lower and upper atmosphere and that this deeply intertwines interactions between the gas and condensed phases in the atmosphere. As a result, it can be argued that multiphase atmospheric chemistry begins … and ends… with gases. This paper is based on the 2018 Polanyi Medal award presentation at the 25th International Symposium on Gas Kinetics & Related Phenomena and traces research carried out in the author's laboratory on multiphase chemistry over a number of decades. While a great deal has been learned about these processes, they remain one of the areas of greatest uncertainty in understanding atmospheric composition, air quality, chemistry, and climate change.
more »
« less
- Award ID(s):
- 1647386
- PAR ID:
- 10371760
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal of Chemical Kinetics
- Volume:
- 51
- Issue:
- 10
- ISSN:
- 0538-8066
- Page Range / eLocation ID:
- p. 736-752
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite their atmospheric abundance, heterogeneous and multiphase reactions of carbonyl compounds are poorly understood. In this study, we investigate the surface adsorption and surface chemistry of methyl ethyl ketone (MEK), the second most abundant ketone in the atmosphere, with several mineral oxide surfaces including SiO 2 , α-Fe 2 O 3 and TiO 2 . In particular, the chemistry of MEK with these common components of mineral dust, under both dry and high relative humidity (RH%) conditions, has been investigated. Furthermore, reactions of adsorbed MEK with gas-phase NO 2 were also examined. We show that MEK molecularly and reversibly adsorbs on SiO 2 whereas irreversible adsorption occurs on both α-Fe 2 O 3 and TiO 2 surfaces, followed by the formation of higher molar mass species resulting from dimerization and oligomerization reactions. Isotope labeling experiments confirmed the incorporation of H atoms from surface hydroxyl groups and strongly adsorbed water into these oligomer products. Most interesting is that at 80% RH, oligomer formation on α-Fe 2 O 3 shifts toward a higher relative abundance of MEK tetramer relative to the dimer while on TiO 2 there was no change in product distribution. In the presence of gas-phase NO 2 , MEK undergoes degradation to formaldehyde and acetaldehyde, followed by the formation of aldol condensation products of these aldehydes on the α-Fe 2 O 3 surface. Overall, this study provides mechanistic insights on mineralogy-specific heterogeneous chemistry of a prevalent and atmospherically abundant ketone.more » « less
-
Carlito Lebrilla (Ed.)The Earth’s atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth’s climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focus on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.more » « less
-
Abstract. Reactive halogen chemistry in the springtime Arctic causes ozone depletion events and alters the rate of pollution processing. There are still many uncertainties regarding this chemistry, including the multiphase recycling of halogens and how sea ice impacts the source strength of reactive bromine. Adding to these uncertainties are the impacts of a rapidly warming Arctic. We present observations from the CHACHA (CHemistry in the Arctic: Clouds, Halogens, and Aerosols) field campaign based out of Utqiaġvik, Alaska, from mid-February to mid-April of 2022 to provide information on the vertical distribution of bromine monoxide (BrO), which is a tracer for reactive bromine chemistry. Data were gathered using the Heidelberg Airborne Imaging DOAS (differential optical absorption spectroscopy) Instrument (HAIDI) on the Purdue University Airborne Laboratory for Atmospheric Research (ALAR) and employing a unique sampling technique of vertically profiling the lower atmosphere with the aircraft via “porpoising” maneuvers. Observations from HAIDI were coupled to radiative transfer model calculations to retrieve mixing ratio profiles throughout the lower atmosphere (below 1000 m), with unprecedented vertical resolution (50 m) and total information gathered (average of 17.5 degrees of freedom) for this region. A cluster analysis was used to categorize 245 retrieved BrO mixing ratio vertical profiles into four common profile shapes. We often found the highest BrO mixing ratios at the Earth's surface with a mean of nearly 30 pmol mol−1 in the lowest 50 m, indicating an important role for multiphase chemistry on the snowpack in reactive bromine production. Most lofted-BrO profiles corresponded with an aerosol profile that peaked at the same altitude (225 m above the ground), suggesting that BrO was maintained due to heterogeneous reactions on particle surfaces aloft during these profiles. A majority (11 of 15) of the identified lofted-BrO profiles occurred on a single day, 19 March 2022, over an area covering more than 24 000 km2, indicating that this was a large-scale lofted-BrO event. The clustered BrO mixing ratio profiles should be particularly useful for some MAX-DOAS (multi-axis DOAS) studies, where a priori BrO profiles and their uncertainties, used in optimal estimation inversion algorithms, are not often based on previous observations. Future MAX-DOAS studies (and past reanalyses) could rely on the profiles provided in this work to improve BrO retrievals.more » « less
-
Abstract After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog‐chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high‐resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low‐volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel‐specific VOC emission inventory that was scaled by burn‐specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas‐phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation‐driven evaporation during up to 2 hr of equivalent atmospheric oxidation.more » « less
An official website of the United States government
