skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CRISPR RNA ‐guided integrase enables high‐efficiency targeted genome engineering in Agrobacterium tumefaciens
Summary Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter‐kingdom gene transfer capability madeAgrobacteriuman essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such asAgrobacterium‐host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA‐guided integrase system forAgrobacteriumgenome engineering. In this work, we demonstrate thatINsertion ofTransposableElements byGuideRNA–AssistedTargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre‐loxPrecombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies forAgrobacteriumspecies and their gene functional analyses.  more » « less
Award ID(s):
1917138 1725122
PAR ID:
10371763
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant Biotechnology Journal
Volume:
20
Issue:
10
ISSN:
1467-7644
Page Range / eLocation ID:
p. 1916-1927
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non- Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid. 
    more » « less
  2. Abstract AgrobacteriumT‐DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non‐homologous end‐joining (NHEJ) protein DNA polymerase Θ, encoded by thePolQgene, for T‐DNA integration is controversial, with some groups claiming it is essential whereas others claim T‐DNA integration inArabidopsisand ricepolQmutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenicpolQmutant plants. We describe a protocol for regenerating transgenicpolQmutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species. 
    more » « less
  3. Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilizs different pathways for transfer of its DNA, which likely reflects the very wide host range of Agrobacterium. Moreover, closely related bacterial species, such as rhizobia, become able transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid. 
    more » « less
  4. Goetz, H (Ed.)
    Agrobacterium-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence (vir) gene helper plasmid (ternary helper), demonstrated that including an additionalvirgene helper plasmid into disarmedAgrobacteriumstrains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophicAgrobacteriumstrains to boostAgrobacterium-mediated plant transformation efficiency. AuxotrophicAgrobacteriumstrains are useful in reducingAgrobacteriumovergrowth after the co-cultivation period because they can be easily removed from the explants due to their dependence on essential nutrient supplementation. We generated thymidine auxotrophic strains from publicAgrobacteriumstrains EHA101, EHA105, EHA105D, and LBA4404. These strains exhibited thymidine-dependent growth in the bacterial medium, and transientGUSexpression assay using Arabidopsis seedlings showed that they retain similar T-DNA transfer capability as their original strains. Auxotrophic strains EHA105Thy- and LBA4404T1 were tested for maize B104 immature embryo transformation using our rapid transformation method, and both strains demonstrated comparable transformation frequencies to the control strain LBA4404Thy-. In addition, our new ternary helper pKL2299A, which carries thevirAgene from pTiBo542 in addition to othervirgene operons (virG,virB,virC,virD,virE, andvirJ), demonstrated consistently improved maize B104 immature embryo transformation frequencies compared to the original version of pKL2299 (33.3% vs 25.6%, respectively). Therefore, our improvedAgrobacteriumsystem, including auxotrophic disarmedAgrobacteriumstrains and a new ternary helper plasmid, can be useful for enhancing plant transformation and genome editing applications. 
    more » « less
  5. Summary Integration ofAgrobacterium tumefacienstransferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.We conducted quantitative transformation assays of wild‐type andpolQmutantArabidopsisand rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency ofpolQmutants was c.20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQmutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQmutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway. 
    more » « less