skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: CRISPR RNA ‐guided integrase enables high‐efficiency targeted genome engineering in Agrobacterium tumefaciens

Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter‐kingdom gene transfer capability madeAgrobacteriuman essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such asAgrobacterium‐host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA‐guided integrase system forAgrobacteriumgenome engineering. In this work, we demonstrate thatINsertion ofTransposableElements byGuideRNA–AssistedTargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre‐loxPrecombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies forAgrobacteriumspecies and their gene functional analyses.

more » « less
Award ID(s):
1917138 1725122
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Plant Biotechnology Journal
Page Range / eLocation ID:
p. 1916-1927
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence‐specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved usingAgrobacteriumT‐DNA, biolistics or by stably integrating nuclease‐encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such asNicotinana tabacum(tobacco) andSolanum lycopersicum(tomato), greater than 10‐fold enhancements inGTfrequencies have been achieved usingDNAvirus‐based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundantSSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon‐based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110‐fold increase in expression of a reporter gene relative to non‐replicating controls. Furthermore, replicons carryingCRISPR/Cas9 nucleases and repair templates achievedGTat an endogenousubiquitinlocus at frequencies 12‐fold greater than non‐viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these highGTfrequencies. We also demonstrate gene‐targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with theWDVreplicons, multiplexedGTwithin the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies ofGTusingWDV‐basedDNAreplicons will make it possible to edit complex cereal genomes without the need to integrateGTreagents into the genome.

    more » « less
  2. Abstract

    AgrobacteriumT‐DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non‐homologous end‐joining (NHEJ) protein DNA polymerase Θ, encoded by thePolQgene, for T‐DNA integration is controversial, with some groups claiming it is essential whereas others claim T‐DNA integration inArabidopsisand ricepolQmutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenicpolQmutant plants. We describe a protocol for regenerating transgenicpolQmutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species.

    more » « less
  3. Abstract

    The arrival to theUnitedStates of theAfricanized honey bee, a hybrid betweenEuropean subspecies and theAfrican subspeciesApis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies fromAfrican andEuropean lineages in a feral population inSouthTexas. An 11‐year survey of this population (1991–2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by theAfrican haplotype. A subsequent study of the nuclear genome showed that theAfricanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture ofA. m. scutellata‐and European‐derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km2area, resulting in a colony density of 5.4 colonies/km2. Of these 28 colonies, 25 were ofA. m. scutellatamaternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. NuclearDNArevealed little change in the introgression ofA. m. scutellata‐derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African‐derived mitochondrial genetic composition.

    more » « less
  4. Summary

    Integration ofAgrobacterium tumefacienstransferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.

    We conducted quantitative transformation assays of wild‐type andpolQmutantArabidopsisand rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.

    Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency ofpolQmutants was c.20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQmutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQmutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.

    We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway.

    more » « less
  5. Abstract Background

    Genetic engineering of crop plants has been successful in transferring traits into elite lines beyond what can be achieved with breeding techniques. Introduction of transgenes originating from other species has conferred resistance to biotic and abiotic stresses, increased efficiency, and modified developmental programs. The next challenge is now to combine multiple transgenes into elite varieties via gene stacking to combine traits. Generating stable homozygous lines with multiple transgenes requires selection of segregating generations which is time consuming and labor intensive, especially if the crop is polyploid. Insertion site effects and transgene copy number are important metrics for commercialization and trait efficiency.


    We have developed a simple method to identify the sites of transgene insertions using T-DNA-specific primers and high-throughput sequencing that enables identification of multiple insertion sites in the T1generation of any crop transformed viaAgrobacterium. We present an example using the allohexaploid oil-seed plantCamelina sativato determine insertion site location of two transgenes.


    This new methodology enables the early selection of desirable transgene location and copy number to generate homozygous lines within two generations.

    more » « less