We present a detailed study of the barium star at the heart of the planetary nebula Abell 70. Time-series photometry obtained over a period of more than 10 yr demonstrates that the barium-contaminated companion is a rapid rotator with temporal variability due to spots. The amplitude and phasing of the photometric variability change abruptly; however, there is no evidence for a change in the rotation period (P = 2.06 d) over the course of the observations. The co-addition of 17 high-resolution spectra obtained with Ultraviolet and Visual Échelle Spectrograph mounted on the Very Large Telescope allows us to measure the physical and chemical properties of the companion, confirming it to be a chromospherically active, late G-type sub-giant with more than +1 dex of barium enhancement. We find no evidence of radial velocity variability in the spectra, obtained over the course of approximately 130 d with a single additional point some 8 yr later, with the radial velocities of all epochs approximately −10 km s −1 from the previously measured systemic velocity of the nebula. This is perhaps indicative that the binary has a relatively long period (P ≳ 2 yr) and high eccentricity (e ≳ 0.3), and that all the observations were taken around radial velocity minimum. However, unless more »
- Publication Date:
- NSF-PAR ID:
- 10371798
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 516
- Issue:
- 4
- Page Range or eLocation-ID:
- p. 4833-4843
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P = 367.7 ± 0.1 d, approximatelymore »
-
Abstract AQ Col (EC 05217-3914) is one of the first detected pulsating subdwarf B (sdB) stars and has been considered to be a single star. Photometric monitoring of AQ Col reveals a pulsation timing variation with a period of 486 days, interpreted as time delay due to reflex motion in a wide binary formed with an unseen companion with expected mass larger than 1.05
M ⊙. The optical spectra and color–magnitude diagram of the system suggested that the companion is not a main-sequence star but a white dwarf or neutron star. The pulsation timing variation also shows that the system has an eccentricity of 0.424, which is much larger than any known sdB long period binary system. That might be due to the existence of another short period companion to the sdB star. Two optical spectra obtained on 1996 December 5 show a radial velocity change of 49.1 km s−1in 46.1 minutes, which suggests the hot subdwarf in the wide binary is itself a close binary formed with another unseen white dwarf or neutron star companion; if further observations show this interpretation to be correct, AQ Col is an interesting triple system worthy of further study. -
ABSTRACT We present a detailed study of the stellar and orbital parameters of the post-common envelope binary central star of the planetary nebula Ou 5. Low-resolution spectra obtained during the primary eclipse – to our knowledge the first isolated spectra of the companion to a post-common-envelope planetary nebula central star – were compared to catalogue spectra, indicating that the companion star is a late K- or early M-type dwarf. Simultaneous modelling of multiband photometry and time-resolved radial velocity measurements was then used to independently determine the parameters of both stars as well as the orbital period and inclination. The modelling indicates that the companion star is low mass (∼0.25 M⊙) and has a radius significantly larger than would be expected for its mass. Furthermore, the effective temperature and surface gravity of nebular progenitor, as derived by the modelling, do not lie on single-star post-AGB evolutionary tracks, instead being more consistent with a post-RGB evolution. However, an accurate determination of the component masses is challenging. This is principally due to the uncertainty on the locus of the spectral lines generated by the irradiation of the companion’s atmosphere by the hot primary (used to derive companion star’s radial velocities), as well as the lackmore »
-
Abstract We present a high-cadence multiepoch analysis of dramatic variability of three broad emission lines (Mg
ii , Hβ , and Hα ) in the spectra of the luminous quasar (λ L λ (5100 Å) = 4.7 × 1044erg s−1) SDSS J141041.25+531849.0 atz = 0.359 with 127 spectroscopic epochs over nine years of monitoring (2013–2022). We observe anticorrelations between the broad emission-line widths and flux in all three emission lines, indicating that all three broad emission lines “breathe” in response to stochastic continuum variations. We also observe dramatic radial velocity shifts in all three broad emission lines, ranging from Δv ∼ 400 km s−1to ∼800 km s−1, that vary over the course of the monitoring period. Our preferred explanation for the broad-line variability is complex kinematics in the gas in the broad-line region. We suggest a model for the broad-line variability that includes a combination of gas inflow with a radial gradient, an azimuthal asymmetry (e.g., a hot spot), superimposed on the stochastic flux-driven changes to the optimal emission region (“line breathing”). Similar instances of line-profile variability due to complex gas kinematics around quasars are likely to represent an important source of false positives in radial velocity searches for binary black holes, which typically lack the kind of high-cadencemore » -
ABSTRACT White dwarfs are one of the few types of stellar object for which we have yet to confirm the existence of companion planets. Recent evidence for metal contaminated atmospheres, circumstellar debris discs, and transiting planetary debris all indicates that planets may be likely. However, white dwarf transit surveys are challenging due to the intrinsic faintness of such objects, the short time-scale of the transits, and the low transit probabilities due to their compact radii. The Large Synoptic Survey Telescope (LSST) offers a remedy to these problems as a deep, half-sky survey with fast exposures encompassing approximately 10 million white dwarfs with r < 24.5 apparent magnitude (mr). We simulate LSST photometric observations of 3.5 million white dwarfs over a 10 yr period and calculate the detectability of companion planets with P < 10 d via transits. We find typical detection rates in the range of 5 × 10−6 to 4 × 10−4 for Ceres-sized bodies to Earth-sized worlds, yielding ∼50–$4000$ detections for a 100 per cent occurrence rate of each. For terrestrial planets in the continuously habitable zone, we find detection rates of ∼10−3 indicating that LSST would reveal hundreds of such worlds for occurrence rates in the range of 1–10 per cent.