Solid oxide cell long-term durability experiments are resource-intensive and have limited ability to capture the interdependence of microstructural evolution and electrochemical performance. Studies of microstructural degradation mechanisms are usually limited to before and after life-test images. Here we describe a life testing method that simultaneously operates multiple symmetric cells under different conditions, simultaneously providing information on electrolysis and fuel cell operation, while sampling the microstructure during operation. The method utilizes laser-cutting to exactly define different cell areas, allowing testing under different current densities with a single current source, and facilitating removal of segments of the cellsduringlife tests, allowing for microstructural evaluation at intermediate times. The method is demonstrated in Ni-YSZ / YSZ / Ni-YSZ fuel-electrode-supported cells at low H2O/H2ratios. Characterization using SEM-based imaging techniques shows pronounced microstructural damage that increases rapidly with increasing current density and time, mirroring observed electrochemical degradation. The present results agree with prior reports for SOC operation under such conditions but reveal new features of the degradation process via the unique capability of time-resolved imaging.
more »
« less
The Poor Academic’s DC-Offset for Reversing Polarity in Electrochemical Cells: Application to Redox Flow Cells
We provide a simple and inexpensive manual DC-offset method for extending the accepted voltage range of a battery cycler to negative voltages, without interfering with the actual operation of the electrochemical cell under the test or exceeding the voltage specs of the battery cycler instrument. We describe the working principles of the method and validate the proposed setup by operating short-term and long-term redox flow battery cycling using compositionally symmetric cell, with open-circuit voltage of zero, and full cell configurations. The method can be used to extend the capability of battery cycler instrumentation to operate any electrochemical cell that requires the polarity to be reversed during operation. Applications include cycling of other symmetric cells (e.g., Li-ion cells), implementation of polarity reversal steps for rejuvenation of electroactive species or rebalancing electrochemical cells, and alternating polarity for electrochemical synthesis.
more »
« less
- Award ID(s):
- 1914543
- PAR ID:
- 10371833
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 169
- Issue:
- 9
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- Article No. 090527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Non‐aqueous redox flow batteries can support the growing need for grid scale energy storage. Conductive and selective membranes are critical to enabling advanced flow battery technology with higher energy density and lower cost. Herein, a series of crosslinked poly(phenylene oxide)‐based membranes functionalized with phenoxyaniline tri‐sulfonate fixed charges are developed and reported. Increasing the degree of functionalization increased the theoretical ion exchange capacity (IEC) to 2.62 mEq g−1compared with a previously achieved maximum of 2.06 mEq g−1for these materials. Increasing membrane IEC increased conductivity (up to 0.41 mS cm−1) and decreased permeability (<1 × 10−9cm2s−1) based on ex situ measurements. While further improvements are still necessary for economically competitive non‐aqueous flow battery applications, these values are among the highest selectivity reported for cation exchange membranes in non‐aqueous electrolytes. In symmetric non‐aqueous electrochemical flow cell testing, current densities over 2 mA cm−2are achieved, although cell polarization is higher than expected. Long‐term cycling is performed at 1 mA cm−2with average coulombic efficiency over 99% maintained for over 70 cycles. This work reinforces that both ex situ transport properties and electrochemical cell evaluation are necessary when evaluating potential membrane materials, although reporting of both is presently uncommon in the literature.more » « less
-
Low C-rate charge and discharge experiments, plus complementary differential voltage or differential capacity analysis, are among the most common battery characterization methods. Here, we adapt the multi-species, multi-reaction (MSMR) half-cell thermodynamic model to low C-rate cycling of whole-cell Li-ion batteries. MSMR models for the anode and cathode are coupled through whole-cell charge balances and cell-cycling voltage constraint equations, forming the basis for model-based estimation of MSMR half-cell parameters from whole-cell experimental data. Emergent properties of the whole-cell, like slippage of the anode and cathode lithiation windows, are also computed as cells cycle and degrade. A sequential least-square optimization scheme is used for parameter estimation from low-C cycling data of Samsung 18650 NMC∣C cells. Low-error fits of the open-circuit cell voltage (e.g., under 5 mV mean absolute error for charge or discharge curves) and differential voltage curves for fresh and aged cells are achieved. We explore the features (and limitations) of using literature reference values for the MSMR half-cell thermodynamic parameters (reducing our whole-cell formulation to a 1-degree-of-freedom fit) and demonstrate the benefits of expanding the degrees of freedom by letting the MSMR parameters be tailored to the cell under test, within a constrained neighborhood of the half-cell reference values. Bootstrap analysis is performed on each dataset to show the robustness of our fitting to experimental noise and data sampling over the course of 600 cell cycles. The results show which specific MSMR insertion reactions are most responsible for capacity loss in each half-cell and the collective interactions that lead to whole-cell slippage and changes in useable capacity. Open-source software is made available to easily extend this model-based analysis to other labs and battery chemistries.more » « less
-
Murzin, Dmitry Yu (Ed.)Nonaqueous flow batteries hold promise given their high cell voltage and energy density, but their performance is often plagued by the crossover of redox compounds. In this study, we used permselective lithium superionic conducting (LiSICON) ceramic membranes to enable reliable long-term use of organic redox molecules in nonaqueous flow cells. With different solvents on each side, enhanced cell voltages were obtained for a flow battery using viologen-based negolyte and TEMPO-based posolyte molecules. The thermoplastic assembly of the LiSICON membrane realized leakless cell sealing, thus overcoming the mechanical brittleness challenge. As a result, stable cycling was achieved in the flow cells, which showed good capacity retention over an extended test time.more » « less
-
While it is well known that the electrochemical performance of lithium-ion batteries degrades with repeated cycling, the impact of aging on thermal properties is less well understood. Degradation of thermal transport within the cell can lead to increased or even excessive temperatures that in turn lead to accelerated ageing or even thermal runaway. Thus, understanding how aging impacts thermal properties is critical to ensuring safe and reliable operation of batteries. In this presentation, we evaluate the evolution of the thermal diffusivity, heat capacity, and density of the electrodes of lithium-ion battery cells which were aged at different thermal conditions. From the measured properties, we estimate the thermal conductivity of the electrodes and the active materials in the electrodes as well. Overall, the transport properties approximately follow a trend with the time-averaged temperature during the aging process. The changes in the thermal properties are correlated with observations of changes to the microstructure of the electrodes during cycling. These results can impact the design of battery systems for improved performance and stability throughout their lifetime.more » « less
An official website of the United States government
