skip to main content


Title: Trajectory Planning and Optimization for Minimizing Uncertainty in Persistent Monitoring Applications
Abstract

This paper considers persistent monitoring of environmental phenomena using unmanned aerial vehicles (UAVs). The objective is to generate periodic dynamically feasible UAV trajectories that minimize the estimation uncertainty at a set of points of interest in the environment. We develop an optimization algorithm that iterates between determining the observation periods for a set of ordered points of interest and optimizing a continuous UAV trajectory to meet the required observation periods and UAV dynamics constraints. The interest-point visitation order is determined using a Traveling Salesman Problem (TSP), followed by a greedy optimization algorithm to determine the number of observations that minimizes the maximum steady-state eigenvalue of a Kalman filter estimator. Given the interest-point observation periods and visitation order, a minimum-jerk trajectory is generated from a bi-level optimization, formulated as a convex quadratically constrained quadratic program. The resulting B-spline trajectory is guaranteed to be feasible, meeting the observation duration, maximum velocity and acceleration, region enter and exit constraints. The feasible trajectories outperform existing methods by achieving comparable observability at up to 47% higher travel speeds, resulting in lower maximum estimation uncertainty.

 
more » « less
NSF-PAR ID:
10371840
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Intelligent & Robotic Systems
Volume:
106
Issue:
1
ISSN:
0921-0296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop an optimization-based framework for joint real-time trajectory planning and feedback control of feedback-linearizable systems. To achieve this goal, we define a target trajectory as the optimal solution of a time-varying optimization problem. In general, however, such trajectory may not be feasible due to , e.g., nonholonomic constraints. To solve this problem, we design a control law that generates feasible trajectories that asymptotically converge to the target trajectory. More precisely, for systems that are (dynamic) full-state linearizable, the proposed control law implicitly transforms the nonlinear system into an optimization algorithm of sufficiently high order. We prove global exponential convergence to the target trajectory for both the optimization algorithm and the original system. We illustrate the effectiveness of our proposed method on multi-target or multi-agent tracking problems with constraints. 
    more » « less
  2. The problem of air-to-surface trajectory optimization for a low-altitude skid-to-turn vehicle is considered. The objective is for the vehicle to move level at a low altitude for as long as possible and perform a rapid bunt (negative sensed-acceleration load) maneuver near the final time in order to attain terminal target conditions. The vehicle is modeled as a point mass in motion over a flat Earth, and the vehicle is controlled using thrust magnitude, angle of attack, and sideslip angle. The trajectory optimization problem is posed as a two-phase optimal control problem using a weighted objective function. The work described in this paper is the first part of a two-part sequence on trajectory optimization and guidance of a skid-to-turn vehicle. In both cases, the objective is to minimize the time taken by the vehicle to complete a bunt maneuver subject to the following constraints: dynamic, boundary, state, path, and interior-point event constraints. In the first part of this two-part study, the performance of thevehicle is assessed. In particular, the key features of the optimal reference trajectories and controls are provided. The results of this study identify that as greater weight is placed on minimizing the height of the bunt maneuver or as the maximum altitude constraint is raised, the time of the bunt maneuver decreases and the time of the problem solution increases. Also, the results of this study identify that as the allowable crossrange of the vehicle is reduced, the time and height of the bunt maneuver increases and the time of the problem solution decrease 
    more » « less
  3. null (Ed.)
    High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the potential of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for future smart mobility systems. 
    more » « less
  4. Abstract

    Lifestyle recovery captures the collective effects of population activities as well as the restoration of infrastructure and business services. This study uses a novel approach to leverage privacy-enhanced location intelligence data, which is anonymized and aggregated, to characterize distinctive lifestyle patterns and to unveil recovery trajectories after 2017 Hurricane Harvey in Harris County, Texas (USA). The analysis integrates multiple data sources to record the number of visits from home census block groups (CBGs) to different points of interest (POIs) in the county during the baseline and disaster periods. For the methodology, the research utilizes unsupervised machine learning and ANOVA statistical testing to characterize the recovery of lifestyles using privacy-enhanced location intelligence data. First, primary clustering using k-means characterized four distinct essential and non-essential lifestyle patterns. For each primary lifestyle cluster, the secondary clustering characterized the impact of the hurricane into four possible recovery trajectories based on the severity of maximum disruption and duration of recovery. The findings further reveal multiple recovery trajectories and durations within each lifestyle cluster, which imply differential recovery rates among similar lifestyles and different demographic groups. The impact of flooding on lifestyle recovery extends beyond the flooded regions, as 59% of CBGs with extreme recovery durations did not have at least 1% of direct flooding impacts. The findings offer a twofold theoretical significance: (1) lifestyle recovery is a critical milestone that needs to be examined, quantified, and monitored in the aftermath of disasters; (2) spatial structures of cities formed by human mobility and distribution of facilities extend the spatial reach of flood impacts on population lifestyles. These provide novel data-driven insights for public officials and emergency managers to examine, measure, and monitor a critical milestone in community recovery trajectory based on the return of lifestyles to normalcy.

     
    more » « less
  5. Abstract

    We study a class of mixed integer optimization problems with linear constraints and a multilinear objective function, the so‐called mixed integer linear maximum multiplicative programs (MIL‐MMPs). Such a problem can be transformed into a second‐order cone program (SOCP) and can be solved effectively by a commercial solver such as CPLEX. However, MIL‐MMPs can also be viewed as special cases of the problem of optimization over the set of efficient solutions in multiobjective optimization. Using this observation, we develop a criterion space search algorithm for solving any MIL‐MMP. An extensive computational study on around 2000 instances illustrates that the proposed algorithm significantly outperforms not only the CPLEX mixed integer SOCP solver but also a state‐of‐the‐art algorithm that is capable of solving special cases of MIL‐MMPs. Moreover, the computational study illustrates that even if we linearize the objective function and solve the linearized problem by CPLEX, the proposed algorithm still performs significantly better.

     
    more » « less