Current free and subscription-based trip planners have heavily focused on providing available transit options to improve the first and last-mile connectivity to the destination. However, those trip planners may not truly be multimodal to vulnerable road users (VRU)s since those selected side walk routes may not be accessible or feasible for people with disability. Depending on the level of availability of digital twin of travelers behaviors and sidewalk inventory, providing the personalized suggestion about the sidewalk with route features coupled with transit service reliability could be useful and happier transit riders may boost public transit demand/funding and reduce rush hour congestion. In this paper, the adaptive trip planner considers the real-time impact of environment changes on pedestrian route choice preferences (e.g., fatigue, weather conditions, unexpected construction, road congestion) and tolerance level in response to transit service uncertainty. Side walk inventory is integrated in directed hypergraph on the General Transit Feed Specification to specify traveler utilities as weights on the hyperedge. A realistic assessment of the effect of the user-defined preferences on a traveler’s path choice is presented for a section of the Boston transit network, with schedule data from the Massachusetts Bay Transportation Authority. Different maximum utility values are presented as a function of varying traveler’s risk-tolerance levels. In response to unprecedented climate change, poverty, and inflation, this new trip planner can be adopted by state agencies to boost their existing public transit demand without extra efforts 
                        more » 
                        « less   
                    
                            
                            Adaptive personalized routing for vulnerable road users
                        
                    
    
            Abstract This research presents an adaptive and personalized routing model that enables individuals with mobility impairments to save their route preferences to a mobility assistant platform. The proactive approach based on anticipated user need accommodates vulnerable road users' personalized optimum dynamic routing rather than a reactive approach passively awaiting input. Most currently available trip planners target the general public's use of simpler route options prioritized based on static road characteristics. These static normative approaches are only satisfactory when conditions of intermediate intersections in the network are consistent, a constant rate of change occurs per each change of the segment condition, and the same fixed routes are valid every day regardless of the user preference. In this study, the vulnerable road user mobility problem is modeled by accommodating personalized preferences changing by time, sidewalk segment traversability, and the interaction between sidewalk factors and weather conditions for each segment contributing to a path choice. The developed reinforcement learning solution presents a lower average cost of personalized, accessible, and optimal path choices in various trip scenarios and superior to traditional shortest path algorithms (e.g., Dijkstra) with static and dynamic extensions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1910397
- PAR ID:
- 10371861
- Publisher / Repository:
- DOI PREFIX: 10.1049
- Date Published:
- Journal Name:
- IET Intelligent Transport Systems
- Volume:
- 16
- Issue:
- 8
- ISSN:
- 1751-956X
- Format(s):
- Medium: X Size: p. 1011-1025
- Size(s):
- p. 1011-1025
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Extensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.more » « less
- 
            Extensive prior work has provided methods for the optimization of routing based on the criteria of travel time and/or the cost of travel and/or the distance traveled. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph to find the best route. Some users desire that the routing suggestion include consideration pertaining to the reduction of risk of encountering violent crime. For example, a user desires a leisurely walk via a safe route from her hotel in an unknown city. Here, we present a method to quantify such user preferences and the risks of encountering crime and to augment the standard routing methods by assigning weights to safety considerations. The proposed method’s advantages, in comparison to other crimeavoidance routing algorithms, include weighting crime types with respect to their potential detrimental value to the user, with temporal qualification and quantification of crime and its statistical aggregation at the geographic resolution down to a city block.more » « less
- 
            Traffic congestion has a negative economic and environmental impact. Traffic conditions become even worse in areas with high volume of trucks. In this paper, we propose a coordinated pricing-and-routing scheme for truck drivers to efficiently route trucks into the network and improve the overall traffic conditions. A basic characteristic of our approach is the fact that we provide personalized routing instructions based on drivers’ individual routing preferences. In contrast with previous works that provide personalized routing suggestions, our approach optimizes over a total system-wide cost through a combined pricing-and-routing scheme that satisfies the budget balance on average property and ensures that every truck driver has an incentive to participate in the proposed mechanism by guaranteeing that the expected total utility of a truck driver (including payments) in case he/she decides to participate in the mechanism, is greater than or equal to his/her expected utility in case he/she does not participate. Since estimating a utility function for each individual truck driver is computationally intensive, we first divide the truck drivers into disjoint clusters based on their responses to a small number of binary route choice questions and we subsequently propose to use a learning scheme based on the Maximum Likelihood Estimation (MLE) principle that allows us to learn the parameters of the utility function that describes each cluster. The estimated utilities are then used to calculate a pricing-and-routing scheme with the aforementioned characteristics. Simulation results in the Sioux Falls network demonstrate the efficiency of the proposed pricing-and-routing scheme.more » « less
- 
            Oblivious routing of network traffic uses predetermined paths that do not change with changing traffic patterns. It has the benefit of using a fixed network configuration while robustly handling a range of varying and unpredictable traffic. Theoretical advances have shown that the benefits of oblivious routing are achievable without compromising much capacity efficiency. For oblivious routing, we only assume knowledge of the ingress/egress capacities of the edge nodes through which traffic enters or leaves the network. All traffic patterns possible subject to the ingress/egress capacity constraints (also known as the hose constraints) are permissible and are to be handled using oblivious routing. We use the widely deployed segment routing method for route control. Furthermore, for ease of deployment and to not deviate too much from conventional shortest path routing, we restrict paths to be 2-segment paths (the composition of two shortest path routed segments). We solve the 2-segment oblivious routing problem for all permissible traffic matrices (which can be infinitely-many).We develop a new adversarial and machine-learning driven approach that uses an iterative gradient descent method to solve the routing problem with worst-case performance guarantees. Additionally, the parallelism involved in descent methods allows this method to scale well with the network size making it amenable for use in practice.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
