skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quasilinear theory of general electromagnetic fluctuations including discrete particle effects for magnetized plasmas: General analysis
The general quasilinear Fokker–Planck kinetic equation for the gyrophase-averaged plasma particle distribution functions in magnetized plasmas is derived, making no restrictions on the energy of the particles and on the frequency of the electromagnetic fluctuations and avoiding the often made Coulomb approximation of the electromagnetic interactions. The inclusion of discrete particle effects breaks the dichotomy of nonlinear kinetic plasma theory divided into the test particle and the test fluctuation approximation because it provides expression of both the non-collective and collective electromagnetic fluctuation spectra in terms of the plasma particle distribution functions. Within the validity of the quasilinear approach, the resulting full quasilinear transport equation can be regarded as a determining nonlinear equation for the time evolution of the plasma particle distribution functions.  more » « less
Award ID(s):
2203321
PAR ID:
10372029
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
9
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents quasilinear theory (QLT) for a classical plasma interacting with inhomogeneous turbulence. The particle Hamiltonian is kept general; for example, relativistic, electromagnetic and gravitational effects are subsumed. A Fokker–Planck equation for the dressed ‘oscillation-centre’ distribution is derived from the Klimontovich equation and captures quasilinear diffusion, interaction with the background fields and ponderomotive effects simultaneously. The local diffusion coefficient is manifestly positive-semidefinite. Waves are allowed to be off-shell (i.e. not constrained by a dispersion relation), and a collision integral of the Balescu–Lenard type emerges in a form that is not restricted to any particular Hamiltonian. This operator conserves particles, momentum and energy, and it also satisfies the $$\smash {H}$$ -theorem, as usual. As a spin-off, a general expression for the spectrum of microscopic fluctuations is derived. For on-shell waves, which satisfy a quasilinear wave-kinetic equation, the theory conserves the momentum and energy of the wave–plasma system. The action of non-resonant waves is also conserved, unlike in the standard version of QLT. Dewar's oscillation-centre QLT of electrostatic turbulence ( Phys. Fluids , vol. 16, 1973, p. 1102) is proven formally as a particular case and given a concise formulation. Also discussed as examples are relativistic electromagnetic and gravitational interactions, and QLT for gravitational waves is proposed. 
    more » « less
  2. Abstract Energetic electron dynamics is highly affected by plasma waves through quasilinear and/or nonlinear interactions in the Earth's inner magnetosphere. In this letter, we provide physical explanations for a previously reported intriguing event from the Van Allen Probes observations, where bursts of electron butterfly distributions at tens of keV exhibit remarkable correlations with chorus waves. Both test particle and quasilinear simulations are used to reveal the formation mechanism for the bursts of electron butterfly distribution. The test particle simulation results indicate that nonlinear phase trapping due to chorus waves is the key process to accelerate electrons to form the electron butterfly distribution within ~30 s, and reproduces the observed features. Quasilinear simulation results show that although the diffusion process alone also contributes to form the electron butterfly distribution, the timescale is slower. Our study demonstrates the importance of nonlinear interaction in rapid electron acceleration at tens of keV by chorus waves. 
    more » « less
  3. null (Ed.)
    Monte Carlo methods are often employed to numerically integrate kinetic equations, such as the particle-in-cell method for the plasma kinetic equation, but these methods suffer from the introduction of counting noise to the solution. We report on a cautionary tale of counting noise modifying the nonlinear saturation of kinetic instabilities driven by unstable beams of plasma. We find a saturated magnetic field in under-resolved particle-in-cell simulations due to the sampling error in the current density. The noise-induced magnetic field is anomalous, as the magnetic field damps away in continuum kinetic and increased particle count particle-in-cell simulations. This modification of the saturated state has implications for a broad array of astrophysical phenomena beyond the simple plasma system considered here, and it stresses the care that must be taken when using particle methods for kinetic equations. 
    more » « less
  4. The plasma weak turbulence theory is a perturbative nonlinear theory, which has been proven to be quite valid in a number of applications. However, the standard weak turbulence theory found in the literature is fully developed for highly idealized unmagnetized plasmas. As many plasmas found in nature and laboratory are immersed in a background static magnetic field, it is necessary to extend the existing discussions to include the effects of ambient magnetic field. Such a task is quite formidable, however, which has prevented fundamental and significant progresses in the subject matter. The central difficulty lies in the formulation of the complete nonlinear response functions for magnetized plasmas. The present paper derives the nonlinear susceptibilities for weakly turbulent magnetized plasmas up to the third order nonlinearity, but in doing so, a substantial reduction in mathematical complexity is achieved by the use of Bessel function addition theorem (or sum rule). The present paper also constructs the weak turbulence wave kinetic equation in a formal sense. For the sake of simplicity, however, the present paper assumes the electrostatic interaction among plasma particles. Fully electromagnetic generalization is a subject of a subsequent paper. 
    more » « less
  5. Quasi electrostatic fluctuations in the upper-hybrid frequency range are commonly detected in the planetary magnetospheric environment. The origin of such phenomena may relate to the instability driven by a loss-cone feature associated with the electrons populating the dipole-like magnetic field. The present paper carries out a one-dimensional electrostatic particle-in-cell simulation accompanied by a reduced quasilinear kinetic theoretical analysis to investigate the dynamics of the upper-hybrid mode instability driven by an initial ring electron distribution function, which is a form of loss-cone distribution. A favorable comparison is found between the two approaches, which shows that the reduced quasilinear theory, which is grounded in the concept of a model of the particle distribution function that is assumed to maintain a fixed mathematical form except that the macroscopic parameters that define the distribution are allowed to evolve in time, can be an effective tool in the study of plasma instabilities, especially if it is guided by and validated against the more rigorous simulation result. 
    more » « less