skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Depth Determination of the 2010 El Mayor‐Cucapah Earthquake Sequence ( M ≥ 4.0)
Abstract The 2010MW7.2 El Mayor‐Cucapah earthquake ruptured a zone of ~120 km in length in northern Baja California. The geographic distribution of this earthquake sequence was well constrained by waveform relocation. The depth distribution, however, was poorly determined as it is near the edge of, or outside, the Southern California Seismic Network. Here we use two complementary methods to constrain the focal depths of moderate‐sized events (M≥ 4.0) in this sequence. We first determine the absolute earthquake depth by modeling the regional depth phases at high frequencies (~1 Hz). We mainly focus onPnand its depth phasespPnandsPn, which arrive early at regional distance and are less contaminated by crustal multiples. To facilitate depth phase identification and to improve signal‐to‐noise ratio, we take advantage of the dense Southern California Seismic Network and use array analysis to align and stackPnwaveforms. For events without clear depth phases, we further determine their relative depths with respect to those with known depths using differential travel times of thePn, directP, and directSphases recorded for event pairs. Focal depths of 93 out of 122M≥ 4.0 events are tightly constrained with absolute uncertainty of about 1 km. Aftershocks are clustered in the depth range of 3–10 km, suggesting a relatively shallow seismogenic zone, consistent with high surface heat flow in this region. Most aftershocks are located outside or near the lower terminus of coseismic high‐slip patches of the main shock, which may be governed by residual strains, local stress concentration, or postseismic slip.  more » « less
Award ID(s):
1829496 1722879
PAR ID:
10372088
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
7
ISSN:
2169-9313
Page Range / eLocation ID:
p. 6801-6814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture. 
    more » « less
  2. Abstract I present a high-precision earthquake relocation catalog and first-motion focal mechanisms before and during the 2019 Ridgecrest earthquake sequence in eastern California. I obtain phase arrivals, first-motion polarities, and waveform data from the Southern California Earthquake Data Center for more than 24,000 earthquakes with the magnitudes varying between −0.7 and 7.1 from 1 January to 31 July 2019. I first relocate all the earthquakes using phase arrivals through a previously developed 3D seismic-velocity model and then improve relative location accuracies using differential times from waveform cross correlation. The majority of the relocated seismicity is distributed above 12 km depth. The seismicity migration along the northwest–southeast direction can be clearly seen with an aseismic zone near the Coso volcanic field. Focal mechanisms are solved for all the relocated events based on the first-motion polarity data with dominant strike-slip fault solutions. The Mw 6.4 and 7.1 earthquakes are positioned at 12.45 and 4.16 km depths after the 3D relocation, respectively, with strike-slip focal solutions. These results can help our understanding of the 2019 Ridgecrest earthquake sequence and can be used in other seismological and geophysical studies. 
    more » « less
  3. Abstract The eastern portion of the Shumagin gap along the Alaska Peninsula ruptured in anMW7.8 thrust earthquake on 22 July 2020. The megathrust fault space‐time slip history is determined by joint inversion of regional and teleseismic waveform data along with co‐seismic static Global Navigation Satellite System (GNSS) displacements. The rupture expanded westward and along‐dip from the hypocenter, located adjacent to the 1938MW8.2 Alaska earthquake, with slip and aftershocks extending into the gap about 180 to 205 km, respectively, at depths from 15 to 40 km. The deeper half of ~75% of the Shumagin gap experienced faulting. However, the patchy slip is significantly less than possible accumulated slip since the region's last major rupture in 1917, compatible with geodetic seismic‐coupling estimates of 10‐40% beneath the Shumagin Islands. The rupture terminated in the western region of very low seismic coupling. There was a regional decade‐scale decrease in b‐value prior to the 2020 event. 
    more » « less
  4. Abstract We attempt to clarify processes associated with the 2019 Ridgecrest earthquake sequence by analyzing space‐time variations of seismicity, potency values, and focal mechanisms of earthquakes leading to and during the sequence. Over the 20 years before theMw7.1 mainshock, the percentage of normal faulting events decreased gradually from 25% to below 10%, indicating a long‐term increase of shear stress. TheMw6.4 andMw7.1 ruptures terminated at areas with strong changes of seismic velocity or intersections with other faults producing arresting barriers. The aftershocks are characterized by highly diverse focal mechanisms and produced volumetric brittle deformation concentrated in a 5–10 km wide zone around the main ruptures. Early aftershocks of theMw7.1 event extended over a wide area below typical seismogenic depth, consistent with a transient deepening of the brittle‐ductile transition. The Ridgecrest earthquake sequence produced considerable rock damage in the surrounding crust including below the nominal seismogenic zone. 
    more » « less
  5. Abstract On 29 July 2021, anMW8.2 thrust‐faulting earthquake ruptured offshore of the Alaska Peninsula within the rupture zone of the 1938MW8.2 earthquake. The spatiotemporal distribution of megathrust slip is resolved by jointly inverting regional and teleseismic broadband waveforms along with co‐seismic static and high‐rate GNSS displacements. The primarily unilateral rupture expanded northeastward, away from the rupture zone of the 22 July 2020MW7.8 Shumagin earthquake. Large slip extends along approximately 175 km, spanning about two third of the estimated 1938 aftershock zone, with well‐bounded depth from 20 to 40 km, and up to 8.6 m slip near the hypocenter. The rupture terminated in the eastern portion of the 1938 aftershock zone in a region of very large geodetic slip deficit where peak slip appears to have occurred in the 1938 rupture. The 2021 and 1938 events do not have similar slip distributions and do not indicate persistent asperities. 
    more » « less