skip to main content

Title: The wild life of ticks: Using passive surveillance to determine the distribution and wildlife host range of ticks and the exotic Haemaphysalis longicornis, 2010–2021
Abstract Background

We conducted a large-scale, passive regional survey of ticks associated with wildlife of the eastern United States. Our primary goals were to better assess the current geographical distribution of exoticHaemaphysalis longicornisand to identify potential wild mammalian and avian host species. However, this large-scale survey also provided valuable information regarding the distribution and host associations for many other important tick species that utilize wildlife as hosts.


Ticks were opportunistically collected by cooperating state and federal wildlife agencies. All ticks were placed in the supplied vials and host information was recorded, including host species, age, sex, examination date, location (at least county and state), and estimated tick burden. All ticks were identified to species using morphology, and suspectH. longicorniswere confirmed through molecular techniques.


In total, 1940 hosts were examined from across 369 counties from 23 states in the eastern USA. From these submissions, 20,626 ticks were collected and identified belonging to 11 different species. Our passive surveillance efforts detected exoticH. longicornisfrom nine host species from eight states. Notably, some of the earliest detections ofH. longicornisin the USA were collected from wildlife through this passive surveillance network. In addition, numerous new county reports were generated forAmblyomma americanum,Amblyomma maculatum,Dermacentor albipictus,Dermacentor variabilis, andIxodes scapularis.


This study provided data on ticks collected from animals from 23 different states in the eastern USA between 2010 and 2021, with the primary goal of better characterizing the distribution and host associations of the exotic tickH. longicornis;however, new distribution data on tick species of veterinary or medical importance were also obtained. Collectively, our passive surveillance has detected numerous new county reports forH. longicornisas well asI. scapularis.Our study utilizing passive wildlife surveillance for ticks across the eastern USA is an effective method for surveying a diversity of wildlife host species, allowing us to better collect data on current tick distributions relevant to human and animal health.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Parasites & Vectors
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stevenson, Brian (Ed.)
    Ticks are the most important vectors of zoonotic disease-causing pathogens in North America and Europe. Many tick species are expanding their geographic range. Although correlational evidence suggests that climate change is driving the range expansion of ticks, experimental evidence is necessary to develop a mechanistic understanding of ticks’ response to a range of climatic conditions. Previous experiments used simulated microclimates, but these protocols require hazardous salts or expensive laboratory equipment to manipulate humidity. We developed a novel, safe, stable, convenient, and economical method to isolate individual ticks and manipulate their microclimates. The protocol involves placing individual ticks in plastic tubes, and placing six tubes along with a commercial two-way humidity control pack in an airtight container. We successfully used this method to investigate how humidity affects survival and host-seeking (questing) behavior of three tick species: the lone star tick ( Amblyomma americanum ), American dog tick ( Dermacentor variabilis ), and black-legged tick ( Ixodes scapularis ). We placed 72 adult females of each species individually into plastic tubes and separated them into three experimental relative humidity (RH) treatments representing distinct climates: 32% RH, 58% RH, and 84% RH. We assessed the survival and questing behavior of each tick for 30 days. In all three species, survivorship significantly declined in drier conditions. Questing height was negatively associated with RH in Amblyomma , positively associated with RH in Dermacentor , and not associated with RH in Ixodes . The frequency of questing behavior increased significantly with drier conditions for Dermacentor but not for Amblyomma or Ixodes . This report demonstrates an effective method for assessing the viability and host-seeking behavior of tick vectors of zoonotic diseases under different climatic conditions. 
    more » « less
  2. Becker, Daniel (Ed.)

    The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species wasA.americanum(24098, 97%) followed byDermacentor variabilis(370, 2%),D.albipictus(271, 1%),Ixodes scapularis(91, <1%)and A.maculatum(38, <1%).Amblyomma americanum,A.maculatum and D.variabiliswere active in Spring and Summer, whileD.albipictus and I.scapulariswere active in Fall and Winter. Factors associated with numbers of individuals ofA.americanumincluded day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.

    more » « less
  3. Abstract

    To better understand tick ecology in Virginia and the increasing Lyme disease incidence in western Virginia, a comparative phenological study was conducted in which monthly collections were performed at twelve sampling locations in southwestern Virginia (high Lyme disease incidence) and 18 equivalent sampling locations in southeastern Virginia (low Lyme disease incidence) for one year. In western Virginia, we also explored the effect of elevation on collection rates of Ixodes scapularis Say (Acari: Ixodidae) and Amblyomma americanum (L.) (Acari: Ixodidae). In total, 35,438 ticks were collected (33,106 A. americanum; 2,052 I. scapularis; 134 Ixodes affinis Neumann [Acari: Ixodidae]; 84 Dermacentor variabilis [Say] [Acari: Ixodidae]; 49 Dermacentor albipictus [Packard] [Acari: Ixodidae]; 10 Haemaphysalis leporispalustris [Packard] [Acari: Ixodidae]; 2 Ixodes brunneus Koch [Acari: Ixodidae]; 1 Haemaphysalis longicornis Neumann [Acari: Ixodidae]). Within southwestern Virginia, Ixodes scapularis collection rates were not influenced by elevation, unlike A. americanum which were collected more frequently at lower elevations (e.g., below 500 m). Notably, I. scapularis larvae and nymphs were commonly collected in southwestern Virginia (indicating that they were questing on or above the leaf litter) but not in southeastern Virginia. Questing on or above the leaf litter is primarily associated with northern populations of I. scapularis. These findings may support the hypothesis that I. scapularis from the northeastern United States are migrating into western Virginia and contributing to the higher incidence of Lyme disease in this region. This comparative phenological study underscores the value of these types of studies and the need for additional research to further understand the rapidly changing tick-borne disease dynamics in Virginia.

    more » « less
  4. Multiple species of ticks, including Ixodes scapularis (Say, Ixodida:Ixodidae), Amblyomma americanum (L., Ixodida:Ixodidae), and Dermacentor variabilis (Say, Ixodida:Ixodidae), occur in high and increasing abundance in both the northeast and southeast United States. North Carolina is at the nexus of spread of these species, with high occurrence and abundance of I. scapularis to the north and A. americanum to the south. Despite this, there are few records of these species in the Piedmont of North Carolina, including the greater Charlotte metropolitan area. Here, we update the known occurrence and abundance of these species in the North Carolina Piedmont. We surveyed for ticks using cloth drags, CO2 traps, and leaf litter samples at a total of 79 sites within five locations: Mecklenburg County, South Mountains State Park, Stone Mountain State Park, Duke Forest, and Morrow Mountain State Park, all in North Carolina, during the late spring, summer, and fall seasons of 2019. From these surveys, we had only 20 tick captures, illuminating the surprisingly low abundance of ticks in this region of North Carolina. Our results indicate the possibility of underlying habitat and host factors limiting tick distribution and abundance in the North Carolina Piedmont. 
    more » « less
  5. Abstract

    Ticks are vectors of many diseases and are expanding in geographic distribution. However, how ticks will fare in their new environments, where they may experience stressful climatic conditions at the expansion front, remains unclear. Since there is a trade‐off in ticks between behaviors that promote longevity and behaviors that promote reproduction, we hypothesized that extreme climatic stress reduces the survivorship of ticks but increases the frequency of tick host‐seeking behavior, or questing. Here, we used a novel method to simulate climatic stress on individual ticks of three species—Amblyomma americanum,Dermacentor variabilis, andIxodes scapularis—to evaluate their survival, physiology, and questing behavior. The first experiment involved placing 144 adult ticks of each species in two temperature ranges (15–25°C and 25–35°C) and three relative humidity (RH) treatments (32%, 58%, and 84% RH). We assessed the ticks daily for survivorship and questing, and we measured water loss by comparing the mass of each tick when it died to when it was fully hydrated. In this first experiment, ticks in warmer and less humid conditions generally died faster than those in cooler and more humid conditions. Ticks of all three species were more likely to quest shortly before their death and consistently died after losing approximately 50%–56% of their total body water content, butIxodesreached that threshold much faster than the other two species. The second experiment involved placing 18 ticks of each species at 35°C and 32% RH. We assessed the ticks every 3 h for survivorship, questing, and water loss. Ticks again were more likely to quest shortly before their death. With frequent checks, we were able to measure the dehydration tolerance more accurately and the rate of water loss. Ticks of all three species consistently died after losing approximately 51% of their total body water content. However,Ixodeslost water approximately 5 times faster thanAmblyommaand 11 times faster thanDermacentor. These results demonstrate that severe climatic stress tilts the trade‐off toward higher questing rates but not higher overall questing time because of reduced survival rates.

    more » « less