skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chromatin fiber breaks into clutches under tension and crowding
Abstract The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.  more » « less
Award ID(s):
2042362
PAR ID:
10372132
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
50
Issue:
17
ISSN:
0305-1048
Page Range / eLocation ID:
p. 9738-9747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks. 
    more » « less
  2. Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus. 
    more » « less
  3. ABSTRACT Chromatin is more than a simple genome packaging system, and instead locally distinguished by histone post-translational modifications (PTMs) that can directly change nucleosome structure and / or be “read” by chromatin-associated proteins to mediate downstream events. An accurate understanding of histone PTM binding preference is vital to explain normal function and pathogenesis, and has revealed multiple therapeutic opportunities. Such studies most often use histone peptides, even though these cannot represent the full regulatory potential of nucleosome context. Here we apply a range of complementary and easily adoptable biochemical and genomic approaches to interrogate fully defined peptide and nucleosome targets with a diversity of mono or multivalent chromatin readers. In the resulting data, nucleosome context consistently refined reader binding, and multivalent engagement was more often regulatory than simply additive. This included abrogating the binding of the Polycomb group L3MBTL1 MBT to histone tails with lower methyl states (me1 or me2 at H3K4, H3K9, H3K27, H3K36 or H4K20); and confirmation that the CBX7 chromodomain and AT-hook-like motif (CD-ATL) tandem act as a functional unit to confer specificity for H3K27me3. Further,in vitronucleosome preferences were confirmed byin vivoreader-CUT&RUN genomic mapping. Such data confirms that more representative chromatin substrates provide greater insight to biological mechanism and its disorder in human disease. 
    more » « less
  4. Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3. 
    more » « less
  5. Abstract The importance of histone variant H2A.Z in transcription regulation has been well established, yet its mechanism-of-action remains enigmatic. Conflicting evidence exists in support of both an activating and a repressive role of H2A.Z in transcription. Here we report cryo-electron microscopy (cryo-EM) structures of nucleosomes and chromatin fibers containing H2A.Z and those containing canonical H2A. The structures show that H2A.Z incorporation results in substantial structural changes in both nucleosome and chromatin fiber. While H2A.Z increases the mobility of DNA terminus in nucleosomes, it simultaneously enables nucleosome arrays to form a more regular and condensed chromatin fiber. We also demonstrated that H2A.Z’s ability to enhance nucleosomal DNA mobility is largely attributed to its characteristic shorter C-terminus. Our study provides the structural basis for H2A.Z-mediated chromatin regulation, showing that the increase flexibility of the DNA termini in H2A.Z nucleosomes is central to its dual-functions in chromatin regulation and in transcription. 
    more » « less