skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fe‐Ion Bolted VOPO 4 ∙2H 2 O as an Aqueous Fe‐Ion Battery Electrode
Abstract Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials.  more » « less
Award ID(s):
2038381
PAR ID:
10372144
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
49
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms. 
    more » « less
  2. Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe 3 O 4 and reduced-graphene-oxide (Fe 3 O 4 @RGO) anode materials. We demonstrate the relationship between the media pH and Fe 3 O 4 @RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe 3 O 4 @GO sheets at different surrounding pH values, and porosity of the resulted Fe 3 O 4 @RGO anode. The anode shows a high surface area of 338.8 m 2 g −1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe 3 O 4 @RGO delivers high specific-charge capacities of 740 mA h g −1 to 200 mA h g −1 at various current densities of 0.5 A g −1 to 10 A g −1 , and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe 3 O 4 -coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe 3 O 4 and other metal oxide nanoparticles on highly porous RGO. 
    more » « less
  3. Abstract Rechargeable aqueous batteries with Zn2+as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g−1at 0.1 A g−1, and the capacity retention rate is 94% after 2000 cycles at 2 A g−1and 83% after 10 000 cycles at 5 A g−1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8layered structure in NaCaVO is energetically favorable for Zn2+diffusion and the structural water situated between V3O8layers promotes a fast charge‐transfer and bulk migration of Zn2+by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+and Ca2+alternately suited in V3O8layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability. 
    more » « less
  4. Abstract Pseudocapacitors promise to fill the gap between traditional capacitors and batteries by delivering reasonable energy densities and power densities. In this work, pseudocapacitive charge storage properties are demonstrated for two isostructural oxides, Sr2LaFeMnO7and Sr2LaCoMnO7. These materials comprise spatially separated bilayer stacks of corner sharing BO6units (B=Fe, Co or Mn). The spaces between stacks accommodate the lanthanum and strontium ions, and the remaining empty spaces are available for oxide ion intercalation, leading to pseudocapacitive charge storage. Iodometric titrations indicate that these materials do not have oxygen‐vacancies. Therefore, the oxide ion intercalation becomes possible due to their structural features and the availability of interstitial sites between the octahedral stacks. Electrochemical studies reveal that both materials show promising energy density and power density values. Further experiments through fabrication of a symmetric two‐electrode cell indicate that these materials retain their pseudocapacitive performance over hundreds of galvanostatic charge‐discharge cycles, with little degradation even after 1000 cycles. 
    more » « less
  5. Abstract New acceptor‐type graphite intercalation compounds (GICs) offer candidates of cathode materials for dual‐ion batteries (DIBs), where superhalides represent the emerging anion charge carriers for such batteries. Here, the reversible insertion of [LiCl2]into graphite from an aqueous deep eutectic solvent electrolyte of 20mLiCl+20mcholine chloride is reported. [LiCl2]is the primary anion species in this electrolyte as revealed by the femtosecond stimulated Raman spectroscopy results, particularly through the rarely observed H–O–H bending mode. The insertion of Li–Cl anionic species is suggested by7Li magic angle spinning nuclear magnetic resonance results that describe a unique chemical environment of Li+ions with electron donors around.2H nuclear magnetic resonance results suggest that water molecules are co‐inserted into graphite. Density functional theory calculations reveal that the anionic insertion of hydrated [LiCl2]takes place at a lower potential, being more favorable. X‐ray diffraction and the Raman results show that the insertion of [LiCl2]creates turbostratic structure in graphite instead of forming long‐range ordered GICs. The storage of [LiCl2]in graphite as a cathode for DIBs offers a capacity of 114 mAh g−1that is stable over 440 cycles. 
    more » « less