In 2014–2015, the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip experiment deployed seafloor absolute pressure gauges and ocean bottom seismometers directly above a large slow slip event, allowing examination of the relationship between slow slip and earthquakes in detail. Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip data were combined with nearby existing land stations to create a catalog of microseismicity consisting of 2,300 earthquakes ranging in magnitude between 0.5 and 4.7 that is complete to magnitude 1.5, yielding almost twice as many events as detected by the onshore networks alone. This greatly improves the seismicity catalog for this active subduction zone margin, especially in the offshore portion that was difficult to study using only the inland permanent seismic network. The new locations for the events within the footprint of the offshore network show that earthquakes near the trench are systematically shallower than and NW (landward) of their locations using only land‐based stations. Our results indicate that Hikurangi seismicity is concentrated in two NE‐SW bands, one offshore beneath the outer forearc wedge, one onshore beneath the eastern Raukumara Peninsula, and the majority of earthquakes are within the subducting Pacific plate with a smaller percent at the plate interface. We find a 20‐km wide northeast trending gap in microseismicity between the two bands and beneath the inner forearc wedge and this gap in seismicity borders the downdip edge of a slow slip patch.
We develop an automated processing procedure to derive a new catalog of earthquake locations, magnitudes, and potencies and analyze 9 years of data between 2008 and 2016 in the San Jacinto fault‐zone region. Our procedure accounts for detailed 3‐D velocity structure using a probabilistic global‐search location inversion and obtains high‐precision relative event locations using differential travel times measured by cross‐correlating waveforms. The obtained catalog illuminates spatiotemporal seismicity patterns in the fault zone with observations for 108,800 earthquakes in the magnitude range −1.8 to 5.4. Inside a focus region consisting of an 80‐km by 50‐km rectangle oriented parallel to the main fault trace, we estimate a 99% detection rate of earthquakes with magnitude 0.6 and greater and detect and locate about 60% more events than those present in the Southern California Seismic Network catalog. The results provide the most complete catalog available for the focused study region during the analyzed period and include both deeper events and very shallow patches of seismicity not present in the regional catalog. The seismicity exhibits a variety of complex patterns that contain important information on deformation processes in the region. The fraction of event pairs with waveforms having cross‐correlation coefficients ≥0.95 is only about 3%, indicating diverse processes operating in the fault zone.
more » « less- Award ID(s):
- 1722561
- NSF-PAR ID:
- 10372155
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 124
- Issue:
- 7
- ISSN:
- 2169-9313
- Page Range / eLocation ID:
- p. 6908-6930
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We derive new, 3D, isotropic models of seismic compressional and shear wavespeeds, Vp and Vs, respectively, their ratio, Vp/Vs, and a catalog of relocated earthquakes for Southern California from more than 10 million P‐ and S‐wave arrivals associated with over 0.3 million earthquakes that occurred between 2000 and 2020. We augment high‐quality analyst‐reviewed phase arrival picks from the Southern California Earthquake Data Center with S‐wave arrival picks obtained with an automated algorithm, and we derive new wavespeed models via traveltime tomography formulated using Poisson‐Voronoi cells (Fang et al., 2020,
https://doi.org/10.1785/0220190141 ). The results contribute to improved regional wavespeed models, particularly the Vp/Vs model, and absolute event locations. The obtained models correlate well with regional geological features and yield more accurate synthetic waveforms than other regional models do for waves with periods shorter than 5 s in much of the modeled region. The derived event catalog exhibits tighter spatial clustering than the standard regional catalog, thereby helping to characterize subsurface features of major faults. The regional 1D averaged Vp/Vs ratio shows high values at shallow depths, decreases to a minimum at about 10 km, then increases again at greater depths below 15 km. Deep seismicity correlates well with regions of Vp/Vs ratio lower than 1.75, which may indicate an increased brittle‐to‐ductile transition depth with an important influence on crustal mechanics. The new wavespeed models and seismic catalog can be useful for various studies including analyses of seismicity patterns and simulations of crustal deformation and ground motion. -
Abstract The 1886 magnitude ∼7 Summerville, South Carolina, earthquake was the largest recorded on the east coast of the United States. A better understanding of this earthquake would allow for an improved evaluation of the intraplate seismic hazard in this region. However, its source fault structure remains unclear. Starting in May 2021, a temporary 19-station short-period seismic network was deployed in the Summerville region. Here, we present our scientific motivation, station geometry, and quality of the recorded seismic data. We also show preliminary results of microearthquake detections and relocations using recordings from both our temporary and four permanent stations in the region. Starting with 52 template events, including two magnitude ∼3 events on 27 September 2021, we perform a matched filter detection with the one year of continuous data, resulting in a catalog of 181 total events. We then determine precise relative locations of a portion of these events using differential travel-time relocation methods, and compare the results with relocation results of 269 events from a previous seismic deployment in 2011–2012. We also determine focal mechanism solutions for three events from 27 September 2021 with magnitudes 2.0, 3.1, and 3.3, and infer their fault planes. Our relocation results show a south-striking west-dipping zone in the southern seismicity cluster, which is consistent with the thrust focal mechanism of the magnitude 3.3 earthquake on 27 September 2021 and results from the previous study based on the temporary deployment in 2011–2012. In comparison, the magnitudes 3.1 and 2.0 events likely occur on a north–south-striking right-lateral strike-slip fault further north, indicating complex patterns of stress and faulting styles in the region.more » « less
-
Abstract The 2016–2017 central Italy seismic sequence occurred on an 80 km long normal-fault system. The sequence initiated with the Mw 6.0 Amatrice event on 24 August 2016, followed by the Mw 5.9 Visso event on 26 October and the Mw 6.5 Norcia event on 30 October. We analyze continuous data from a dense network of 139 seismic stations to build a high-precision catalog of ∼900,000 earthquakes spanning a 1 yr period, based on arrival times derived using a deep-neural-network-based picker. Our catalog contains an order of magnitude more events than the catalog routinely produced by the local earthquake monitoring agency. Aftershock activity reveals the geometry of complex fault structures activated during the earthquake sequence and provides additional insights into the potential factors controlling the development of the largest events. Activated fault structures in the northern and southern regions appear complementary to faults activated during the 1997 Colfiorito and 2009 L’Aquila sequences, suggesting that earthquake triggering primarily occurs on critically stressed faults. Delineated major fault zones are relatively thick compared to estimated earthquake location uncertainties, and a large number of kilometer-long faults and diffuse seismicity were activated during the sequence. These properties might be related to fault age, roughness, and the complexity of inherited structures. The rich details resolvable in this catalog will facilitate continued investigation of this energetic and well-recorded earthquake sequence.more » « less
-
The US Gulf Coast has several massive underground caverns within salt domes. These caverns can store vast amounts of hydrocarbons, including the US Strategic Petroleum Reserve, used to increase energy supplies during emergency shortages. Unstable caverns can collapse, leading to sinkhole formation and the release of gas. Previous studies have identified elevated seismicity and surface deformation as precursors to salt cavern collapse and sinkhole formation. However, identifying sporadic seismicity can be complicated, requiring complex methods for robust detection and characterization of events, especially in high-noise settings. We investigate deformation of the Sorrento salt dome in Louisiana using 8 months of data from seismic arrays first deployed in February 2020. Our arrays are comprised of 12 to 17 SmartSolo 3C seismic nodes, spaced 0.2-1.9 km and installed around the dome. We recorded more than 1.2 Tb of data, sampled at 500 Hz. Waveforms of identified events range from <1 s to over 30 s in length, rendering power detection methods like the STA/LTA inefficient. Building on recent studies that use machine learning methods to identify small magnitude (Mw -2.0 to 2.0) earthquakes, we developed a custom-trained convolutional neural network and applied it over sliding windows of the waveforms to detect earthquakes, pick P-wave arrivals, and reduce false positives. We correlated waveforms across all stations and identified events when they were observed on at least 60% of the array stations. We used spectrograms to infer fluid content around sources and to eliminate anthropogenic signals, including but not limited to, helicopters, trains, and boats from the catalog. Event locations were used to identify microearthquake swarms within the dome. Our preliminary results show elevated seismicity in the days preceding a well failure, suggesting our method can be used to monitor underground caverns and similar settings, such as mines, dams, and geothermal sites.more » « less