skip to main content


Title: Characterization of a Solar Mass Eclipsing Binary with TESS and IGRINS
Abstract

Stellar radius measurements from eclipsing binaries are typically ∼5% larger than standard stellar models predict. This disagreement means we are unable to derive reliable model-dependent radii, which impact stellar and exoplanet characterization. Using light curves from the TESS satellite and high-resolution, near-infrared spectra from IGRINS, we determine the masses and radii of a main sequence eclipsing binary, V1177 Cen (TIC 3099339). We detrend the light curve using a Gaussian process and derive radial velocities using spectral-line broadening functions, fitting both jointly in an MCMC framework. We find that both stars are near 1Mwith radii 6%–9% larger than the Sun. Based on the absence of Lithium in optical spectra, the inflation is potentially the effect of early post-main sequence evolution, or magnetic fields. We compare our measurement to model isochrones, finding the most consistent agreement with models that include magnetic fields, and correspond to an age of ∼4 Gyr.

 
more » « less
NSF-PAR ID:
10372182
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
6
Issue:
9
ISSN:
2515-5172
Format(s):
Medium: X Size: Article No. 196
Size(s):
["Article No. 196"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present analyses of improved photometric and spectroscopic observations for two detached eclipsing binaries at the turnoff of the open cluster NGC 752: the 1.01 days binary DS And and the 15.53 days BD +37 410. For DS And, we findM1= 1.692 ± 0.004 ± 0.010M,R1= 2.185 ± 0.004 ± 0.008R,M2= 1.184 ± 0.001 ± 0.003M, andR2= 1.200 ± 0.003 ± 0.005R. We either confirm or newly identify unusual characteristics of both stars in the binary: the primary star is found to be slightly hotter than the main-sequence turnoff and there is a more substantial discrepancy in its luminosity compared to models (model luminosities are too large by about 40%), while the secondary star is oversized and cooler compared to other main-sequence stars in the same cluster. The evidence points to nonstandard evolution for both stars, but most plausible paths cannot explain the low luminosity of the primary star. BD +37 410 only has one eclipse per cycle, but extensive spectroscopic observations and the Transiting Exoplanet Survey Satellite light curve constrain the stellar masses well:M1= 1.717 ± 0.011MandM2= 1.175 ± 0.005M. The radius of the main-sequence primary star near 2.9Rdefinitively requires large convective core overshooting (>0.2 pressure scale heights) in models for its mass, and multiple lines of evidence point toward an age of 1.61 ± 0.03 ± 0.05 Gyr (statistical and systematic uncertainties). Because NGC 752 is currently undergoing the transition from nondegenerate to degenerate He ignition of its red clump stars, BD +37 410 A directly constrains the star mass where this transition occurs.

     
    more » « less
  2. Abstract

    The eclipsing binary IT Librae is an unusual system of two B-type stars that is situated about 1 kpc above the Galactic plane. The binary was probably ejected from its birthplace in the disk, but the implied time of flight to its current location exceeds the evolutionary lifetime of the primary star. Here we present a study of new high-dispersion spectroscopy and an exquisite light curve from the Kepler K2 mission in order to determine the system properties and resolve the timescale discrepancy. We derive a revised spectroscopic orbit from radial-velocity measurements and determine the component effective temperatures through comparison of reconstructed and model spectra (T1= 23.8 ± 1.8 kK,T2= 13.7 ± 2.5 kK). We use the Eclipsing Light Curve code to model the K2 light curve, and from the inclination of the fit we derive the component masses (M1= 9.6 ± 0.6M,M2= 4.2 ± 0.2M) and mean radii (R1= 6.06 ± 0.16R,R2= 5.38 ± 0.14R). The secondary star is overluminous for its mass and appears to fill its Roche lobe. This indicates that IT Librae is a post-mass-transfer system in which the current secondary was the mass donor star. The current primary star was rejuvenated by mass accretion, and its evolutionary age corresponds to the time since the mass transfer stage. Consequently, the true age of the binary is larger than the ejection time of flight, thus resolving the timescale discrepancy.

     
    more » « less
  3. Abstract

    Understanding magnetic activity on the surface of stars other than the Sun is important for exoplanet analyses to properly characterize an exoplanet’s atmosphere and to further characterize stellar activity on a wide range of stars. Modeling stellar surface features of a variety of spectral types and rotation rates is key to understanding the magnetic activity of these stars. Using data from Kepler, we use the starspot modeling program STarSPot (STSP) to measure the position and size of spots for KOI-340, which is an eclipsing binary consisting of a subgiant star (Teff= 5593 ± 27 K,R= 1.98 ± 0.05R) with an M-dwarf companion (M= 0.214 ± 0.006M).STSPuses a novel technique to measure the spot positions and radii by using the transiting secondary to study and model individual active regions on the stellar surface using high-precision photometry. We find that the average size of spot features on KOI-340's primary is ∼10% the radius of the star, i.e., two times larger than the mean size of solar-maximum sunspots. The spots on KOI-340 are present at every longitude and show possible signs of differential rotation. The minimum fractional spotted area of KOI-340's primary is22+12%, while the spotted area of the Sun is at most 0.2%. One transit of KOI-340 shows a signal in the transit consistent with a plage; this plage occurs right before a dark spot, indicating that the plage and spot might be colocated on the surface of the star.

     
    more » « less
  4. Abstract

    Evolutionary and structural models for contact binary stars make quantitative predictions about the distribution of systems in the mass ratio (q)–orbital period (P) plane. Specifically, contact binaries containing primaries with convective envelopes are predicted to be absent at mass ratios larger than a critical threshold that is a function of orbital period and total mass. We test this prediction by characterizing candidate contact binaries that appear to have mass ratios in violation of this threshold. We obtained quadrature-phase echelle spectra (R≈ 31,000) for 18 close binaries (0.65 day <P< 2.00 days) in the Kepler field, from which we extracted radial velocity profiles for each system. Use of a joint Markov Chain Monte Carlo fitting routine on the Kepler light curves and the radial velocity profiles allows us to retrieve all fundamental system and component parameters. Of the 18 systems, only one is a contact binary, and both components likely have radiative—not convective—envelopes. The 17 remaining systems are detached binaries (eight) or semidetached binaries (four) with ellipsoidal variations, rotating variables (four), or pulsating variables (one). Therefore, none of the systems are in violation of the theoretical mass ratio thresholds for low-mass contact binaries. The 12 noncontact binaries follow aT2/T1qrelation significantly weaker than expected for main-sequence components, suggesting radiative heating of the secondaries. Most of the secondaries have radii larger than main-sequence expectations, a possible consequence of heating. Four secondaries fill their Roche lobes, while none of the primaries do, possibly indicating prior mass-ratio reversal.

     
    more » « less
  5. Abstract

    Young planets provide a window into the early stages and evolution of planetary systems. Ideal planets for such research are in coeval associations, where the parent population can precisely determine their ages. We describe a young association (MELANGE-3) in the Kepler field, which harbors two transiting planetary systems (KOI-3876 and Kepler-970). We identify MELANGE-3 by searching for kinematic and spatial overdensities around Kepler planet hosts with high levels of lithium. To determine the age and membership of MELANGE-3, we combine new high-resolution spectra with archival light curves, velocities, and astrometry of stars near KOI-3876 spatially and kinematically. We use the resulting rotation sequence, lithium levels, and color–magnitude diagram of candidate members to confirm the presence of a coeval 105 ± 10 Myr population. MELANGE-3 may be part of the recently identified Theia 316 stream. For the two exoplanet systems, we revise the stellar and planetary parameters, taking into account the newly determined age. Fitting the 4.5 yr Kepler light curves, we find that KOI-3876b is a 2.0 ± 0.1Rplanet on a 19.58 day orbit, while Kepler-970 b is a 2.8 ± 0.2Rplanet on a 16.73 day orbit. KOI-3876 was previously flagged as an eclipsing binary, which we rule out using radial velocities from APOGEE and statistically validate the signal as planetary in origin. Given its overlap with the Kepler field, MELANGE-3 is valuable for studies of spot evolution on year timescales, and both planets contribute to the growing work on transiting planets in young stellar associations.

     
    more » « less